Allocation of terrestrial carbon sources using $^{14}CO_2$; 1 measurement and modeling 2 Scott J. Lehman¹, John B. Miller^{2,3}, Chad Wolak¹, John Southon⁴, Pieter P. Tans², 3 Stephen A. Monzka², Colm Sweeney^{2,3}, Arlyn Andrews^{2,3}, Brian LaFranchi⁵, Thomas P. 4 Guilderson⁵, Jocelyn C. Turnbull^{3,6} 5 6 ¹Institute of Arctic and Alpine Research, University of Colorado, Boulder CO USA 7 ²NOAA Earth System Research Laboratory, Boulder CO USA 8 ³Cooperative Institute for Research in Environmental Sciences, University of Colorado, 9 10 Boulder CO USA ⁴Keck AMS Facility, University of California, Irvine CA USA 11 ⁵Lawrence Livermore National Lab, Livermore CA USA 12 ⁶National Isotope Centre, GNS Science, Lower Hutt NZ 13 14

15 **Abstract:**

16

17 The radiocarbon content of whole air provides a theoretically ideal and now 18 observationally proven tracer for recently-added fossil fuel derived CO₂ in the 19 atmosphere (C_{ff}). Over large industrialized land areas, determination of C_{ff} also 20 constrains the change in CO_2 due to uptake and release by the terrestrial biosphere. Here we review the development of a Δ^{14} CO₂ measurement program and its 21 22 implementation within the NOAA Global Monitoring Division's air sampling network, using the US as an example. The Δ^{14} CO₂ measurement repeatability is evaluated based 23 24 on surveillance cylinders of whole air and equates to a C_{ff} detection limit of ≤ 0.9 ppm 25 based on measurement uncertainties alone. We also attempt to quantify additional sources of uncertainty arising from non-fossil terms in the atmospheric ¹⁴CO₂ budget 26 27 and from uncertainties in the composition of "background" air against which C_{ff} 28 enhancements occur. As an example of how we apply the measurements, we present 29 estimates of the boundary layer enhancements of C_{ff} and C_{bio} using observations 30 obtained from vertical airborne sampling profiles off of the northeastern US. We also 31 present an updated time series of measurements from NOAA GMD's Niwot Ridge site at 3475 m asl in Colorado in order to characterize recent Δ^{14} CO₂ variability in the well-32 33 mixed free troposphere. 34

35 **1. Introduction:**

36 The small radiocarbon fraction of total CO₂ has proven to be an ideal tracer for 37 its fossil fuel derived component [c.f. Levin et al., 2003; Turnbull et al., 2006; Graven et 38 al., 2009; Miller et al., 2012]. Unlike all other contributions to the atmospheric CO_2 39 budget, the fossil fuel component is devoid of radiocarbon, so that temporal and 40 spatial gradients in recently added fossil fuel CO₂ can be readily identified as 41 radiocarbon gradients provided there is adequate precision in the measurements. 42 Over large industrialized land areas such as Eurasia and North America, the use of ¹⁴C 43 to isolate the contribution of recently added fossil fuel to the observed CO₂ mole 44 fraction (C_{ff}) also quantifies (by difference) the change in atmospheric CO₂ due to 45 uptake and release by the terrestrial biosphere (C_{bio}). Here we review the development of a precise $^{14}CO_2$ processing and measurement capability in discrete ~ 2 46 47 L (STP) samples of whole air, suitable for implementation within existing flask 48 sampling networks around the world. Our development effort was undertaken as a 49 collaboration between the University of Colorado, the Global Monitoring Division 50 (GMD) of NOAA's Earth System Research Laboratory, and the Keck AMS Facility at the 51 University of California at Irvine. 52 Most of our measurements occur within NOAA GMD's global air sampling network, 53 which includes flask sampling at the surface, in aircraft profiles, and from tall towers [http://www.esrl.noaa.gov/gmd/dv/iadv/]. Paired ¹⁴C and trace gas measurements 54 55 expanded into a growing network of tall towers around the US between 2009 and 2010, 56 facilitated in part by a new measurement collaboration with the Center for Accelerator 57 Mass Spectrometry at Lawrence Livermore National Laboratory. We begin by outlining the atmospheric budgets of CO₂ and Δ^{14} CO₂ and an 58 analytical framework for C_{ff} detection using paired CO₂ and Δ^{14} CO₂ observations. We 59 then document the Δ^{14} CO₂ measurement repeatability as ascertained in surveillance 60 61 cylinders of whole air and give an example of how authentic field measurements have 62 been used to partition boundary layer enhancements of CO_2 into fossil fuel and

63 terrestrial biospheric components. Finally, we describe uncertainties in our C_{ff} detection

64 methods arising from non-fossil terms in the isotopic budget and from incomplete65 representation of "background" air against which enhancements are determined.

66 **2.** C_{ff} detection using ¹⁴CO₂:

67 68 The value of radiocarbon measurements with regard to C_{ff} detection arises from 69 the fact that ancient carbon comprising fossil fuels is devoid of ¹⁴C due to radio-decay 70 while the ¹⁴C activity of the atmosphere and living biosphere is maintained at relatively high (i.e. "modern") levels as a result of ongoing ¹⁴C production. Thus, CO₂ sourced from 71 the combustion of fossil fuels is ¹⁴C-free whereas all other sources of CO₂ to the 72 73 atmosphere have isotopic signatures that are close to that of the atmosphere itself. In simplified form, $\Delta^{14}C \approx [(^{14}C/C)_{sample}/(^{14}C/C)_{standard}-1]1000\%$, but with corrections for 74 mass-dependent fractionation (from δ^{13} C measurement) and small amounts of 75 76 radioactive decay between the times of sampling and measurement (see Stuiver and *Pollach* [1977] for full expression). Therefore, the Δ^{14} CO₂ of fossil fuel CO₂ = -1000 ‰. 77 78 In contrast, the measured value of the recent, well-mixed atmosphere is about +50 ‰ 79 [Turnbull et al., 2007; Levin et al., 2008; Graven et al., 2012]. By mass balance, the 80 addition of 1 ppm of fossil CO₂ to an atmospheric CO₂ burden of 390 ppm will produce a Δ^{14} C depletion of ~2.7 ‰ (i.e. (-1000 ‰ - 50 ‰)/390 ppm). 81

82 We describe the global atmospheric budgets for CO_2 and its ¹⁴C:C ratio 83 (expressed in the Δ notation) below in equations 1a and b;

84

85
$$\frac{dC_{atm}}{dt} = F_{bio} + F_{oce} + F_{fos}$$
 (1a)

86

87
$$C_{atm} \frac{d\Delta_{atm}}{dt} = (\Delta_{fos} - \Delta_{atm})F_{fos} + \Delta_{ocedis}F_{ocedis} + \Delta_{biodis}F_{biodis} + isoF_{nuc} + isoF_{cosmo}$$
(1b)

88

For the CO₂ budget (equ. 1a), C_{atm} refers to the atmospheric mole fraction of CO₂,
 F_{bio} represents the net terrestrial biosphere-atmosphere flux, F_{oce} is the net ocean atmosphere flux, and F_{fos} is the flux from fossil fuel combustion. For the isotopic budget

92 (equ. 1b), net isotopic exchange terms can be neglected since the Δ notation includes a 93 δ^{13} C correction that accounts for mass dependent fractionation. The subscripts "ocedis" 94 and "biodis" denote the ocean-atmosphere and biosphere-atmosphere isotopic 95 disequilibria and associated gross (one-way) mass fluxes. Isotopic disequilibrium refers 96 to the difference between isotopic signatures of carbon leaving and entering a reservoir. In the terrestrial case, disequilibrium results from the respiration of ¹⁴C-enriched CO₂ 97 assimilated, on average, a decade or two ago when the atmospheric Δ^{14} C was much 98 99 higher as a result of atmospheric nuclear weapons testing. In the oceanic case it results 100 from the reemergence of aged ¹⁴C-depleted CO₂ at the surface, carried by waters which 101 have been out of contact with the atmosphere long enough for radioactive decay to 102 become significant. The subscript "nuc" refers to the flux of ¹⁴CO₂ from nuclear reactors, and "cosmo" to the cosmogenic production of ¹⁴C. These last terms are pure 103 ¹⁴C fluxes and as such don't have isotopic signatures and are represented only as "iso"-104 fluxes. If the non-fossil contributions to the tropospheric ¹⁴C budget are either small or 105 relatively uniform in space, then the mass balance sensitivity and the ¹⁴C measurement 106 107 precision will closely approximate the actual C_{ff} detection capability.

108 To illustrate this, we show in *Figure 1* a map of wintertime fossil fuel-derived CO_2 and (total) Δ^{14} CO₂ within the planetary boundary layer (PBL) over North America as 109 110 represented in the TM5 transport model [Krol et al., 2005; Miller et al., 2012]. For ¹⁴CO₂, 111 all terms in eq. 1b are represented in the model, except the nuclear term [c.f., Graven and Gruber, 2011]. The color scales depicting Δ^{14} CO₂ and fossil fuel CO₂ distributions 112 113 correspond to the expected mass balance sensitivity of -2.7 ‰/ppm. Thus, the similar 114 colors and patterns in *Figure 1* indicate that, over North America, the ¹⁴C gradients are 115 controlled largely by the presence of fossil fuel CO₂. The remaining small differences are 116 due primarily to small atmospheric gradients imposed by the terrestrial disequilibrium 117 flux of ¹⁴C ($\Delta_{biodis}F_{biodis}$ in eq. 1b). This contribution can be guantified and applied as a small correction in the fossil fuel CO₂ detection algorithm, as discussed below. ¹⁴C 118 119 emissions from nuclear power generation [Graven and Gruber, 2011], which are 120 neglected in this simulation due to large relative uncertainty, may produce near-surface

121 signals averaging 1 to 2 ‰ in the densely populated northeastern US (see Section 5 for a 122 discussion of related C_{ff} detection uncertainties). The cosmogenic production and ocean disequilibrium terms do not result in significant gradients of ¹⁴C over the US, although 123 124 they are also specified in the model. Isotopic budget terms used in the TM5 simulations 125 have been estimated following methods outlined in Turnbull et al. [2009] and at 126 CarbonTracker [http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ 127 documentation.html]. 128 In order to quantify the fossil fuel CO₂ signal from measurements, we follow

128 In order to quantify the fossil fuel CO_2 signal from measurements, we follow 129 Levin *et al.* [2003] in considering observations of both CO_2 and $\Delta^{14}C$ to be the sum of 130 background values for each tracer plus any fossil fuel and biospheric contributions; 131

132
$$C_{obs} = C_{bg} + C_{ff} + C_{bio}$$
 (2a)

 $\Delta_{abs}C_{abs} = \Delta_{be}C_{be} + \Delta_{ff}C_{ff} + \Delta_{bia}C_{bia}$

133 134

As in Turnbull *et al.* [2006], we divide C_{bio} into photosynthetic and respiratory terms C_{photo} and C_{resp}, respectively. Expanding and combining eqs. 2a and b, and setting Δ_{photo} equal to Δ_{bg} (which will be the same as a result of ¹³C:¹²C normalization), we obtain

(2b).

139
$$C_{ff} = \frac{C_{obs}(\Delta_{obs} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}} - \frac{C_{resp}(\Delta_{resp} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}}$$
(2c).

140

141 In eq. 2c, all of the quantities in the first term on the right-hand-side are either 142 known a priori or can be measured, and the second term, which we call C_{corr resp}, is a correction to C_{ff}, which accounts for the disequilibrium contribution of ¹⁴C from 143 144 heterotrophic respiration. The recent isotopic disequilibrium is approximately [Ciais et al., 1999] the difference between present day atmospheric Δ^{14} C and that from a decade 145 146 or so earlier, reflecting the mean residence time of carbon in the terrestrial biosphere. C_{corr resp}, which always acts to lower C_{ff}, was estimated previously as 0.4 - 0.8 ppm in 147 148 summer and 0.2 – 0.3 ppm in winter, based on estimates of the seasonally varying

149 heterotrophic respiration flux and PBL height and the mean terrestrial biosphere

150 isotopic disequilibrium [*Turnbull et al.*, 2009; *Turnbull et al.*, 2006]. Miller *et al.* [2012]

151 recently introduced a method for estimating the C_{corr_resp} correction term on a sample-

152 by-sample basis which we will discuss below in *Section 5*.

153 Having estimated C_{corr_resp} , the C_{ff} enhancement relative to background is 154 calculated from eq. 2c. Equation 2a can then be applied to isolate C_{bio} , which is the 155 biological enhancement or depletion of CO₂ relative to background.

156

157 158

7 3. ¹⁴CO₂ Measurement precision and C_{ff} detection limit:

Taking the simulated distribution of Δ^{14} CO₂ in the near surface over the US (for 159 160 a week in January, 2006) in *Figure 1a* as an example, we may expect continental scale gradients within the PBL of up to 10-15‰ in winter, suggesting that a Δ^{14} CO₂ 161 162 measurement precision of better than 2‰ would be needed in order to resolve 163 synoptic gradients with confidence (i.e., with a signal to noise ratio of \geq 5:1). Time dependent Δ^{14} CO₂ variability within the PBL at observing sites in the US, Europe and E. 164 165 Asia may reach 10 to 20 ‰ [c.f., Levin et al., 2003; Turnbull et al., 2011; Miller et al., 166 2012] but is often much less, depending on transport and proximity of observing sites 167 to major fossil CO₂ combustion sources. We also see from eqs. 2b and c that 168 quantification of fossil fuel CO₂ enhancements from observations requires 169 measurements in both "background" and "observed" air for both the CO₂ mole fraction and its ¹⁴C activity. Propagation of measurement uncertainties through eq. 2c 170 171 suggests that in order to obtain a C_{ff} detection limit of ≤ 1 ppm (1 σ), the necessary Δ^{14} CO₂ measurement precision will be $\leq 2 \%$ (1 σ), with the C_{ff} detection limit 172 173 determined almost entirely by the much larger relative uncertainty in the ¹⁴C 174 measurement precision (i.e., $\sim 1/20$ for 14 C vs. $\sim 1/4000$ for CO₂ if the CO₂ 175 measurement precision is ±0.1 ppm, [Conway et al., 1994]). For long-term monitoring programs, the relevant metric of precision will be the long-term ¹⁴C measurement 176 177 repeatability (defined by JCGM [2008]) in appropriate control materials rather than

the single-sample measurement precision (sometimes also called the "externalprecision" when using AMS).

180 At the University of Colorado, the long-term measurement repeatability is 181 evaluated based on repeat extraction and measurement of whole air from control 182 cylinders. From 2003 to 2009, we used for this purpose a single cylinder of whole air 183 filled at NOAA's Niwot Ridge, CO site (NWR, at 3475 m asl) in Sept. 2002, which we 184 refer to as "NWTstd" [Turnbull et al., 2007]. In 2009, by which time NWTstd was near 185 exhaustion, we introduced two new control cylinders, "NWT3" and "NWT4". Both were filled at NWR in Feb. 2009, but a small amount of ¹⁴C-free CO₂ was added to 186 187 NWT4 to lower the activity with respect to ambient values. Presently we measure 3 188 extraction aliquots each from NWT3 and NWT4 in each AMS measurement wheel. 189 Individual measurement wheels are typically comprised of 8 primary measurement 190 standards (NBS Oxalic Acid I, Ox-I), 1 secondary standard (NBS Oxalic Acid II, Ox-II), 1 191 process blank (¹⁴C-free CO₂ in air from cylinders), 6 controls (NWT3 and 4), and 24 192 authentic samples. Extraction, graphitization, measurement and normalization follow 193 methods described in Turnbull et al. [2007]. Extraction occurs on either a manual or an 194 automated extraction line ("CRex", as described in Turnbull et al., [2010]) and samples 195 from individual observing sites are always extracted on the same line.

196 In *Figure 2* we show individual measurement values, means and raw (un-197 normalized) 1σ repeatabilities for both NWT3 and 4 by order of either measurement 198 or extraction, from September 2009 to May 2012. There is no statistically significant 199 difference between results for the two extraction lines. Temporal patterns of the 200 measured value by measurement order suggest some systematic variances result from 201 either graphitization or measurement conditions (graphitization and measurement 202 occur nearly simultaneously). This may be expected, despite the large number of 203 accompanying primary measurement standards, since, in our experience, the within-204 wheel agreement of controls from gas cylinders is generally better than that for Ox-I 205 [Lehman et al., 2010].

206 Long-term repeatabilities for NWT3 and 4 of 1.6 - 1.7 % (*Fig. 2*) are slightly 207 better than but comparable to the values of 1.8 - 1.9‰ previously reported for 208 NWTstd from 2003-2009 [Turnbull et al., 2007; Lehman et al., 2010]. For authentic 209 samples, we continue to report a 1σ measurement repeatability of ±1.8 % or the 210 single sample measurement precision, whichever is larger [Turnbull et al., 2007]. Propagation of uncertainties of ± 1.8 % for Δ^{14} CO₂ and of ± 0.1 ppm for CO₂ through 211 212 eq. 2c suggests a long-term detection limit for C_{ff} of 0.9 ppm, based on measurement 213 uncertainties alone. This will also characterize the uncertainty in C_{bio} determined 214 according to eq. 2a.

- 215
- 216 217

6 4. A Northeast US example:

218 As an example of how we apply actual field measurements, we show in Figure 219 3 the separation of boundary layer enhancements of CO₂ into their fossil fuel and 220 biological components, using ~6 years of airborne observations at CMA and NHA (from 221 Miller et al., [2012]), in a region of significant emissions and air outflow in the 222 northeast US (see *Fig. 1* for site locations). In this analysis, boundary layer samples 223 from ~300 m asl are treated as "obs", and "bg" is from ~4000 m asl within the well-224 mixed free troposphere sampled in the same vertical profile. This treatment of the 225 observations effectively assumes that the overlying free troposphere is the source of 226 air into which new emissions are added in the PBL. The presentation in *Figure 3* differs 227 from that in Miller et al. [2012], in that here we decompose only the observations 228 from ~300 m asl, as opposed to those from ~300 m asl and from 2000-2400 m asl, 229 since the latter are often above the PBL. 230 We see that C_{ff} is present within the PBL throughout the year, with ~80% of the

we see that C_{ff} is present within the PBL throughout the year, with "80% of the observations in the range of 0 - 7 ppm. Occasional instances of negative C_{ff} , which are non-physical, are explained almost entirely by the $1\sigma \Delta^{14}CO_2$ measurement uncertainty, and to a far lesser extent by the failure of our simplified assumptions regarding the source of "backround" air [*Miller et al.*, 2012]. Accounting explicitly for

C_{ff} using ¹⁴C also sharpens our view of the biospheric CO₂ signal, which differs 235 236 significantly from the raw boundary layer enhancement or depletion of CO₂ (i.e., the 237 difference between green and black lines in *Fig. 3*). Also noteworthy is the large 238 presence of respiratory CO_2 in the boundary layer in winter, when, on average, the 239 biological emissions account for ~60% of the total PBL CO₂ enhancement. This 240 suggests that reliable attribution of sources using ground- or satellite- based, CO₂-only 241 observing strategies will not be possible without additional information, even over 242 urban and industrial areas in winter.

- 243
- 244 245

44 5. Uncertainties from correction terms:

In the analysis above, the correction term $C_{corr resp}$ (the 2nd term in eq. 2c) was 246 247 calculated explicitly for each sample according to methods detailed in Miller et al. 248 [2012]. We use these estimates here as a quantitative basis for assessing related 249 uncertainties in C_{ff}. The heterotrophic respiration flux as a function of time since 250 assimilation was estimated monthly at a resolution of 1° x 1° using pulse response 251 functions from the CASA biosphere model [Thompson and Randerson, 1999] and then convolved with the atmospheric Δ^{14} CO₂ history [c.f., *Levin and Kromer*, 2004] to obtain 252 253 $F_{biodis}\Delta_{bios}$ (eq. 1b). This was applied to the individual observations (as the numerator in 254 C_{corr resp}) using spatial sensitivities to surface emissions obtained for each sample from a 255 Lagrangian transport model (FLEXPART, [Stohl et al., 2005]). The individual corrections 256 along with their monthly mean and standard deviation for all observations at CMA are 257 given in Figure 4. As expected, the estimates for the ~300 m asl observations within the 258 PBL show a larger sensitivity to the surface emissions than the samples from 2000 – 259 2400 m asl. The monthly average estimates for the PBL of ~0.7 ppm in summer and ~0.3 260 ppm in winter are comparable to previous estimates of the seasonal mean corrections 261 [*Turnbull et al.*, 2006; *Turnbull et al.*, 2009]. The likely uncertainty associated with 262 applying seasonal mean corrections as opposed to explicitly determined sample-by-263 sample corrections is indicated by the monthly 1σ standard deviations, which are up to

264 ~0.4 ppm in summer and ~0.1 ppm in winter. Associated corrections and uncertainties
265 will likely be smaller for regions dominated by relatively dry Mediterranean climates,
266 compared to those for the humid continental eastern US that apply here. The absolute
267 uncertainty is difficult to determine, but will stem primarily from the accuracy of the
268 biospheric residence times in the CASA biosphere model.

269 As stated earlier, we have neglected the influence of ¹⁴CO₂ emissions from the 270 nuclear power sector in the TM5 simulations and in eq. 2c, which is used to determine 271 C_{ff} from observations. Using gridded estimates of the nuclear emissions from *Graven* 272 and Gruber [2011] we calculate possible corrections for all observations at CMA using 273 the same method as above. Like C_{corr resp}, the term C_{corr nuc} will always act to raise C_{ff}, since both are surface sources of ¹⁴CO₂ that mask the isotopic dilution associated with 274 275 surface emissions of fossil fuel derived CO₂. As shown in Figure 5, estimated C_{corr nuc} 276 shows little seasonal variation and is considerably larger in the near surface than at 277 2000-2400 m asl. Monthly means range from 0.25 – 0.9 ppm for the PBL, with monthly 278 1 o standard deviations of 0.15 - 1.0 ppm. Estimates of C_{corr-nuc} and its monthly standard 279 deviation for all observations at NHA (not shown) are approximately 50% lower. The 280 annual mean signals agree within errors with those for the northeast US obtained by 281 Graven and Gruber [2011] (using an Eulerian transport model) for their central 282 estimates of nuclear emissions. The predicted gradient in nuclear signals between CMA 283 and NHA is due to the distribution of reactors (there are substantially fewer in northern 284 New England than in the large metropolitan areas to the south and west 285 [http://www.nrc.gov/reactors/operating/map-power-reactors.html]) and the 286 approximate e-folding length scale for sensitivity to emissions influencing our 300 m asl 287 observations at CMA and NHA of 150 – 300 km (from FLEXPART). 288 If the central emissions estimates of Graven and Gruber [2011] closely approximate the actual power plant emissions of ¹⁴CO₂, then we may conclude that 289 290 likely maximum uncertainties in C_{ff} due to variability in C_{corr nuc} are in the range of 0.1 to 291 1.0 ppm for the eastern US (based on estimates for CMA, influenced by a region in

which reactors are relatively common). The potential low bias in C_{ff} that arises from

293 neglecting C_{corr nuc} altogether has about the same range as the uncertainty (e.g., range 294 of monthly means compared to range of monthly standard deviations in Fig. 5). It is 295 important to note, however, that the ${}^{14}CO_2$ emissions estimates are characterized by 296 large uncertainties, which Graven and Gruber [2011] represent as 70% confidence 297 intervals of the distributions of total ¹⁴C emissions for different reactor types. In the US, all reactors are either pressurized- or boiling- water reactors, both of which emit ¹⁴C as 298 ¹⁴CO₂, although emissions from the more common pressurized water reactors (PWRs) 299 are primarily in the form of methane. Estimates of the fraction of ${}^{14}C$ emitted as ${}^{14}CO_2$ 300 301 for PWRs range from 5 – 25% [IAEA, 2004], which suggests substantial uncertainty in 302 overall nuclear $^{14}CO_2$ emissions in the US. Estimates of the influence on C_{ff} for the lower limit of the 70% confidence interval for nuclear emissions are \leq 0.25 ppm for the US 303 304 [Graven and Gruber, 2011]. The influence associated with the upper limit of emissions 305 estimates for the US is large enough to produce frequent and sustained reversals in the vertical ¹⁴C gradient which are not observed (i.e., producing negative C_{ff} well in excess of 306 307 that in Fig. 3). The distributions used to obtain 70% confidence limits may, in fact, contain a high bias, as the fraction of 14 C emitted as 14 CO₂ by PWRs was specified as 308 309 25%, which is at the upper end of independent estimates.

310 Regardless of the uncertainties, the nuclear signal in much of the central and 311 western US will be negligible (with the possible exception of areas near 4 reactors in 312 southern California and 3 in Arizona). In parts of Europe, the necessary corrections and 313 uncertainties will be substantially larger due to the large number of reactors and reactor 314 types, and the presence of fuel reprocessing plants [Graven and Gruber 2011; Levin et al., 2003]. For ¹⁴C-based C_{ff} observing programs in Europe and Japan, and very near 315 reactor sites in the US, additional monitoring of nuclear ¹⁴CO₂ emissions may be needed 316 317 [Batler, 2012].

318

319 320

9 6. Uncertainties from specification of "background":

321 Determination of the enhancement of fossil fuel derived CO₂ directly from
 322 observations requires measurements and/or estimates of both "observed" and

323 "background" air (i.e., eqs. 2a-c). In the case of the NE US example given above (Section 324 4), measurements from the overlying free troposphere sampled in the same vertical 325 profile as the PBL "observation" were used to represent "background". However, if air 326 refreshing the PBL (into which new emissions are then added) originates from locations 327 with a different CO₂ mole fraction and/or a different isotopic composition than the 328 contemporaneously overlying free troposphere, the estimated PBL enhancement would 329 be subject to error over and above that associated with measurement uncertainty 330 alone. In the case of seasonally persistent horizontal shear (in which upper and lower 331 level air originate from different locations), such errors would be present as an 332 undetected seasonal bias in C_{ff}.

Sustained meridional gradients of Δ^{14} CO₂ in the free troposphere over northern 333 334 hemisphere continents are expected as a result of the changing balance of isotopic 335 budget terms (i.e., those in eq. 1b) with latitude [Randerson et al., 2002; Levin et al., 336 2010; Graven et al., 2012], while strong upper level westerly winds will tend to suppress zonal free troposphere Δ^{14} CO₂ gradients in middle latitudes. For the period 2005-2007 337 338 (the most recent available observations), Graven et al. [2012] document a mid-latitude minimum in average Δ^{14} CO₂ in the Northern Hemisphere of ~3±1 per mil with respect to 339 340 observations at 15°N and of ~1±0.5 per mil with respect to 70 °N. These are comparable 341 to mean Northern Hemisphere gradients observed by Levin et al. [2010] from 1994-342 1997, but in both studies the NH gradient is characterized by only 4 observing sites. 343 For the NE US example, Miller et al. [2012] provide an analysis of possible bias resulting from seasonal shear along the east coast based on simulated Δ^{14} CO₂ 344 distributions over North America, since the actual recent Δ^{14} CO₂ distribution remains 345 346 poorly constrained. Back-trajectories calculated by FLEXPART for CMA in summer show 347 that the high altitude samples originate further north by ~15° than do those for the lower troposphere three days prior to sampling. Sampling the TM5 Δ^{14} C output using 348 349 the end points of 7 day back trajectories indicates that the trajectories for upper level samples intersect simulated free troposphere Δ^{14} C values higher than those for the 350 351 lower level samples by ~1.6 ‰, equating to a possible seasonal C_{ff} bias of ~ +0.5 ppm

352 C_{ff}. During winter, the difference between upper and lower level endpoints is ~3° of
 353 latitude three days prior to sampling, suggesting that the contemporaneously overlying
 354 wintertime free troposphere provides a relatively reliable estimate of background.

355 We can evaluate the mean and variability of the recent zonal free troposphere 356 Δ^{14} CO₂ gradient over North America by comparing measurement results from NWR (at 357 3475 m asl, 40.05° N) and upper level (~4000 m asl) samples from CMA (at 38.83 °N) and 358 NHA (at 42.95 °N) for the same time periods. In *Figure 6a* we show an updated $\Delta^{14}CO_2$ 359 time series for NWR for the period 2004-2011 (extending results in *Turnbull et al.*, 360 [2007]), with observations associated with >2-sigma outliers in corresponding 361 measurements of CO removed in order reduce the influence of local pollution events. 362 Also given is a combined polynomial and harmonic fit to the observations that is 363 frequently used to isolate the seasonal signal in atmospheric CO₂ observations [Thoning 364 et al., 1989]. The one-sigma deviation of the individual NWR observations from the fit is 365 ±1.9 ‰, similar to the long-term measurement uncertainty.

366 In *Figure 6b* we compare the individual ~4000 m asl observations from CMA and 367 NHA (from Miller et al., [2012]) to the NWR fitted curve. The mean deviation of the NHA 368 observations from the NWR fit is +0.07 per mil, with a one-sigma deviation from the 369 NWR fit of ±2.2‰, comparable to that for the NWR observations themselves. For CMA, 370 the mean and one-sigma standard deviations with respect to the NWR fit are +0.61 ‰ 371 and ±2.6 ‰, respectively. Positive deviations of the individual observations with respect 372 to NWR occur at both eastern sites in summer (Fig. 4b), possibly due to weaker 373 summertime mean westerlies and increased zonal flow. The shared variability at 374 different sites sampling the relatively well-mixed free troposphere likely arises from 375 changes in vertical transport in addition to seasonal changes in sources [Turnbull et al., 376 2009].

377 From the gradients described above, assumed "background" $\Delta^{14}CO_2$ may differ 378 from actual background by as much as 1.5 - 3 ‰ (i.e., ~0.5 - 1 ppm C_{ff}) for large scale, 379 regional studies. In the case of relatively localized campaigns for which up- and down-380 wind observations within the PBL may be available, the background uncertainty will be

381 much less and limited primarily by the measurement precision. We note that recent

382 build-out of the observing network in the US, which now includes ~thrice weekly

383 measurements at 9 tall towers (Fig. 1a), provides the opportunity to develop a spatially-

and temporally- continuous estimate of the Δ^{14} CO₂ field over the US using numerical

385 transport models guided by observations. This, we expect, will substantially reduce both

386 uncertainty and potential bias in C_{ff} arising from uncertainty in "background".

387

388 7. Conclusions:

389

We have demonstrated a scientifically meaningful Δ^{14} CO₂ measurement 390 391 capability in small (~2L) samples of whole air suitable for implementation within flask 392 sampling networks around the world. The recent measurement repeatability in 393 extraction aliquots of whole air from surveillance cylinders is $\leq 1.7 \%$ (1 σ), and $\sim 1.8 \%$ 394 (1σ) since the inception of our measurement programs in 2003. The latter equates to 395 a fossil fuel CO_2 (C_{ff}) detection capability of 0.9 ppm from measurement uncertainty 396 alone, with an equivalent uncertainty in estimates of the change in CO₂ due to 397 biological uptake and release (C_{bio}). Additional sources of uncertainty in the ¹⁴C-based detection of C_{ff} arise from "non-fossil" terms in the isotopic budget, primarily the 398 399 return flux of ${}^{14}CO_2$ to the atmosphere from heterotrophic respiration and ${}^{14}CO_2$ 400 emissions from the nuclear power industry. For the eastern US, we estimate 401 uncertainties from the heterotrophic respiration term of up to ± 0.4 ppm C_{ff} in summer 402 and substantially less in winter. Uncertainties associated with variable emissions from 403 the nuclear power sector in the eastern US have a likely maximum of ± 0.1 to ± 1.0 404 ppm C_{ff} , with a comparable range in the maximum bias in C_{ff} to lower-than-actual 405 values if these emissions are neglected altogether. Uncertainties arising from inadequate observational constraints on "background" $\Delta^{14}CO_2$ are less readily 406 quantified, but may be as large as 0.5 to 1.0 ppm C_{ff} for regional scale (~ 10⁵ km²) 407 408 monitoring programs [c.f., Levin et al., 2010; Miller et al., 2012]. These uncertainties 409 are likely to be reduced substantially as the increasing number of recent observations

410 are assimilated by transport models in order to represent the time varying Δ^{14} CO₂

411 distribution around the US.

412 As an example of how we apply the measurements, we present estimates of 413 the boundary layer enhancements of C_{ff} and C_{bio} using observations obtained from 414 vertical airborne sampling profiles off of the northeastern US [Miller et al., 2012]. C_{ff} 415 typically ranges from 0-7 ppm, while as much of 60% of the boundary layer CO_2 416 enhancement in winter is from biological respiration. We also present an updated 417 time series of measurements from NOAA GMD's NWR site in CO (at 3475 m asl) in order to characterize recent Δ^{14} CO₂ (and the zonal Δ^{14} CO₂ gradient) in the well-mixed 418 419 free troposphere over the mid-latitude US.

420

421 Figure captions:

422

423 **Figure 1.** a) Δ^{14} CO₂ (left panel) and b) the fossil fuel component of total CO₂ (C_{ff} , 424 right panel) in the atmosphere near the surface over North America for a week in 425 January of 2006 in the TM5 transport model. The CO₂ and ¹⁴CO₂ budget terms are

426 discussed in the text and at

427 <u>http://www.esrl.noaa.gov/gmd/</u>ccgg/carbontracker/documentation.html. The fossil fuel

428 emissions used in the model are based on the CDIAC US and global totals and the spatial

429 patterns are from the EDGAR inventory. Existing ¹⁴C sampling sites for the US are given

in a) according to site code (as at <u>http://www.esrl.noaa.gov/gmd/dv/iadv/</u>). Bowties are

431 aircraft sites and triangles are surface or tower sites. NWR (surface flask site) was

- 432 excluded for clarity, but overlies BAO. Measurements at BAO, LEF and AMT are made in
- 433 collaboration with investigators at LLNL.
- 434

435 **Figure 2.** Δ^{14} CO₂ measurement values (per mil) in individual extraction aliquots of

- 436 NWT3 (left panels) or NWT4 (right panels), by order of graphitization and
- 437 measurement (top panels) or extraction (lower panels). "Manual" (black) and "CRex"
- 438 (red) refer to results for manual and automated extraction lines, respectively.

439 Uncertainties are given at 1-sigma, and define the longterm repeatability of the440 measurement, as discussed in the text.

111	
442	<i>Figure 3.</i> Enhancement or depletion of CO_2 in the planetary boundary layer (~300 m
443	asl) relative to the free troposphere (~4000 m asl) in six years of approximately bi-
444	weekly airborne profiles at CMA and NHA (<i>Fig. 1a</i>), separated into biogenic (green)
445	and fossil (red) fractions according to eqs. 2a-c. Black and green lines highlight,
446	respectively, the seasonal variation of raw CO_2 enhancement or depletion in the
447	boundary layer and that attributable to biospheric exchange. The occasional negative
448	values of $\mathcal{C}_{f\!f}$ arise primarily from vertical $\Delta^{14} extsf{CO}_2$ gradients that are within
449	measurement uncertainties and to a far lesser extent from errors inherent in our
450	simple one-dimensional analytical model.
451	
452	<i>Figure 4.</i> Estimates of $C_{corr_{resp}}$ for individual ~300 m asl (dark red) and 2000-2400 m asl
453	(light red) samples at CMA, using methods of Miller et al. [2012] explained in the text.
454	The monthly means and standard deviations are also shown.
455	
456	<i>Figure 5.</i> Estimates of C_{corr_nuc} for individual ~300 m asl (dark red) and 2000-2400 m asl
457	(light red) samples at CMA, using central, gridded estimates of US nuclear 14 CO $_2$
458	emissions from Graven and Gruber [2011]. The method of calculation is otherwise the
459	same as for C _{corr_resp} (<i>Fig. 4</i>). The monthly means and standard deviations are also
460	shown.
461	
462	<i>Figure 6. a</i>) Δ^{14} CO ₂ measurement values at NWR, CO (3475 m asl, 40.5 °N), for 2003
463	through 2011. Results up to 1/17/06 were presented earlier by <i>Turnbull et al.</i> [2007].
464	Measurements for which corresponding CO values exceed a seasonal fit by more than 2
465	sigma were removed to reduce the influence of local pollution events on the record.
466	Remaining results were fitted (black curve) according to the method of Thoning et al.
467	[1989]. Individual measurement uncertainties are not shown for clarity, but are

468	discussed in the text and listed in Table 1 . b) Δ^{14} CO ₂ measurement values for ~4000 m
469	asl samples at NHA (green) and CMA (red), compared to the fitted curve for NWR in <i>a)</i> .
470	Site locations are given in <i>Figure 1a</i> . Note that prior to 8/24/04 at NWR, pilot
471	measurements were made at Rafter Radiocarbon Lab, NZ [Turnbull et al., 2007].
472	
473	Tables:
474	
475	Table 1. Δ^{14} CO ₂ measurement values at NWR, CO (3475 m asl, 40.5 °N), for 2003
476	through 2011. (see separate file)
477 478	
479 480	References cited:
481	Batler, M. (2012), Using Radiocarbon to Go Beyond Good Faith in Measuring CO_2
482	Emissions, Science, 337: 400-401. [DOI:10.1126/science.337.6093.400]
483	
484	Ciais, P., P. Friedlingstein, D. S. Schimel, and P. P. Tans (1999), A global calculation of the
485	delta C-13 of soil respired carbon: Implications for the biospheric uptake of
486	anthropogenic CO2, Global Biogeochem. Cycles, 13(2), 519-530.
487	
488	Conway, T.J., P.P. Tans, L.S. Waterman, K.W. Thoning, D.R. Kitzis, K.A. Masarie, and N.
489	Zhang (1994), Evidence for interannual variability of the carbon cycle from the
490	NOAA/CMDL global air sampling network, J. Geophys. Res., 99:22831-22855.
491	
492	Graven, H.D., Stephens, B.B., Guilderson, T.P., Campos, T.L., Schimel, D.S. & J. E.
493	Campbell (2009), Vertical profiles of biospheric and fossil fuel-derived CO_2 and
494	fossil fuel CO ₂ : CO ratios from airborne measurements of $D^{14}C$, CO ₂ and CO
495	above Colorado, USA, <i>Tellus</i> , DOI: 10.1111/j.1600-0889.2009.00421.x

496	Graven, H. D., and N. Gruber (2011), Continental-scale enrichment of atmospheric
497	14 CO ₂ from the nuclear power industry: potential impact on the estimation of
498	fossil fuel-derived CO ₂ , Atmos. Chem. Phys. Discuss., 11(5), 14583-14605.
499	doi:10.5194/acp-11-12339-2011.
500	
501	Graven, H.D., T.P. Guilderson, and R.F. Keeling (2012), Observations of radiocarbon in
502	CO2 at seven global sampling sites in the Scripps flask network: Analysis of
503	spatial gradients and seasonal cycles, J. Geophys. Res., 117, D02303,
504	doi:10.1029/2011JD016535.
505	
506	IAEA (2004), Management of waste containing tritium and Carbon-14. Technical Report
507	Series no. 421. IAEA, Vienna 109 pp.
508	
509	JCGM (2008), International Vocabulary of Metrology – Basic and General Concepts and
510	Associated Terms, edited by <mark>J. C. f. G. i.</mark> Metrology, Bureau Internation des Poids
511	et Mesures.
512	
513	Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W.
514	Peters, F. Dentener, and P. Bergamaschi (2005), The two-way nested global
515	chemistry-transport zoom model TM5: algorithm and applications, Atmospheric
516	Chemistry and Physics, 5, 417-432.
517	
518	Lehman, S. J., J. B. Miller, J. C. Turnbull, J. R. Southon, P. P. Tans, and C. Sweeney (2011)
519	¹⁴ CO ₂ measurements in the NOAA/ESRL Global Co-operative Sampling Network:
520	An update on measurements and data quality, in "15th WMO/IAEA Meeting of
521	Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracer
522	Measurement Techniques (Jena, GDR 7-10 Sept. 2009)", World Meteorological
523	Organization Global Atmosphere Watch Report No. 194, W.A. Brand ed., pp. 315-
524	318, Geneva CH.

525	
526	Levin, I., B. Kromer, M. Schmidt, and H. Sartorius (2003), A novel approach for
527	independent budgeting of fossil fuel CO ₂ over Europe by ¹⁴ CO ₂ observations,
528	Geophys. Res. Lett., 30(23), 2194.
529	
530	Levin, I. and Kromer, B. (2004), The tropospheric 14CO2 level in mid- latitudes of the
531	Northern Hemisphere (1959–2003). Radiocarbon 46(3), 1261–1272.
532	Levin, I., Hammer, S., Kromer, B. and Meinhardt, F. (2008), Radiocarbon observations in
533	atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch
534	observations as background. Sci. Total. Environ., 391 , 211–216.
535	Levin, I., et al. (2010), Observations and modelling of the global distribution and long-
536	term trend of atmospheric 14CO2, Tellus, Ser. B, 62, 26–46
537	Miller, J.B., Lehman, S.J., Montzka, S.A., Sweeney,C., Miller, B.R., Karion, A., <u>Wolak, C</u> .,
538	Miller, L., Dlugokencky, E.J., Southon, J., <u>Turnbull, J.C.</u> and P. P. Tans (2012).
539	Linking emissions of fossil fuel CO_2 and other anthropogenic trace gases using
540	atmospheric ¹⁴ CO ₂ . Journal of Geophysical Research. doi:10.1029/2011JD017048.
541	
542	Randerson, J. T., I. G. Enting, E. A. G. Schuur, K. Caldeira, and I. Y. Fung (2002), Seasonal
543	and latitudinal variability of troposphere $\Delta^{14} extsf{CO}_2$: Post bomb contributions from
544	fossil fuels, oceans, the stratosphere, and the terrestrial biosphere, Global
545	Biogeochem. Cycles, 16(4), 1112.
546	
547	Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa (2005), Technical note: The
548	Lagrangian particle dispersion model FLEXPART version 6.2, Atmospheric
549	Chemistry and Physics, 5, 2461-2474.
550	
551	Stuiver, M., and H. Pollach (1977), Discussion: reporting of 14C data, Radiocarbon, 19(3),
552	355-363.

553	Thompson, M. V., and J. T. Randerson (1999), Impulse response functions of terrestrial
554	carbon cycle models: method and application, Global Change Biology, 5(4), 371-
555	394.
556	
557	Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989), Atmospheric carbon dioxide at
558	Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985, J.
559	Geophys. Res., 94, 8549-8565.
560	
561	Turnbull, J.C., Miller, J.B., Lehman, S.J., Tans, P., Sparks, R.J., and J. Southon (2006),
562	Comparison of 14 CO ₂ , CO, and SF ₆ as tracers for determination of recently added
563	fossil fuel CO_2 in the atmosphere and implications for biological CO_2 exchange.
564	Geophysical Research Letters 33, L01817, doi: 10.129/2005GL024213, 5 pp.
565	
566	Turnbull, J.C., Lehman, S.J., Miller, J.B., Tans, P., Sparks, R.J., and J. Southon. (2007), A
567	new high-precision ¹⁴ CO ₂ time series for North American continental air. <i>Journal of</i>
568	Geophysical Research doi:10.1029/2006JD008184, 10 pp.
569	
570	Turnbull, J., P. Rayner, J. Miller, T. Naegler, P. Ciais, and A. Cozic (2009), On the use of
571	14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an
572	atmospheric transport model, J. Geophys. Res., 114.
573	
574	Turnbull, J.C., Lehman, S.J., Morgan, S. and C. Wolak (2010), A new automated
575	extraction system of ¹⁴ C measurement in atmospheric CO ₂ . <i>Radiocarbon</i> 52, <u>1261-</u>
576	<u>9</u> .
577	
578	Turnbull J.C., Tans, P.P, Lehman, S.J., Baker, D., Conway, T.J., Chung, Y.S., Gregg, J.,
579	Miller, J.B., Southon, J.R., and L-X. Zhou (2011), Atmospheric observations of
580	carbon monoxide and fossil fuel CO ₂ emissions from East Asia. J. Geophys. Res.
581	<i>116</i> , (D24306), doi:10.1029/2011JD016691.

0.0 0.7 1.5 2.2 2.9 3.6 4.4 5.1 5.8 6.5 7.3 C_{ff} [ppm]

Figure 1.

Figure 2.

Figure 3.

Figure 6.

yr	mo	day	hr (utc)		dec. date	D14C	D14C_unc
	2003	5	27	19	2003.4022	72.29	2.82
	2003	5	27	19	2003.4022	72.29	2.82
	2003	7	29	16	2003.5745	62.73	2.6
	2003	7	29	16	2003.5745	62.73	2.6
	2003	8	5	17	2003.5937	65.18	2.6
	2003	8	5	17	2003.5937	65.18	2.6
	2003	8	12	16	2003.6128	64.61	2.6
	2003	8	12	16	2003.6128	64.61	2.6
	2003	8	12	16	2003.6128	64.61	2.6
	2003	8	12	16	2003.6128	64.61	2.6
	2003	8	26	17	2003.6513	64.09	2.6
	2003	8	26	17	2003.6513	64.09	2.6
	2003	8	26	17	2003.6513	64.09	2.6
	2003	8	26	17	2003.6513	64.09	2.6
	2003	9	23	20	2003.7284	69.99	2.6
	2003	9	23	20	2003.7284	68.32	2.6
	2003	9	23	20	2003.7284	69.99	2.6
	2003	9	23	20	2003.7284	68.32	2.6
	2003	10	7	18	2003.7664	67.76	2.6
	2003	10	7	18	2003.7664	67.76	2.6
	2003	11	4	21	2003.8436	64.85	2.6
	2003	11	4	21	2003.8436	64.33	2.6
	2003	11	4	21	2003.8436	64.85	2.6
	2003	11	4	21	2003.8436	64.33	2.6
	2003	11	25	21	2003.9011	70.82	2.6
	2003	11	25	21	2003.9011	70.82	2.6
	2003	12	9	19	2003.9393	68.64	2.6
	2003	12	9	19	2003.9393	68.64	2.6
	2003	12	23	19	2003.9775	66.92	2.6
	2003	12	23	19	2003.9775	67.03	2.6
	2003	12	23	19	2003.9775	66.92	2.6
	2003	12	23	19	2003.9775	67.03	2.6
	2003	12	30	19	2003.9967	64.98	2.6
	2003	12	30	19	2003.9967	64.98	2.6
	2004	2	3	21	2004.0926	67.9	2.6
	2004	2	3	21	2004.0926	66.43	2.6
	2004	2	3	21	2004.0926	67.9	2.6
	2004	2	3	21	2004.0926	66.43	2.6
	2004	2	17	20	2004.1307	66.7	2.6
	2004	2	17	20	2004.1307	66.7	2.6
	2004	3	16	21	2004.2073	66.76	2.6
	2004	3	16	21	2004.2073	64.75	2.6

2004	3	16	21	2004.2073	66.76	2.6
2004	3	16	21	2004.2073	64.75	2.6
2004	3	30	17	2004.2451	66.76	2.6
2004	3	30	17	2004.2451	68.48	2.6
2004	3	30	17	2004.2451	66.76	2.6
2004	3	30	17	2004.2451	68.48	2.6
2004	4	13	20	2004.2837	67.07	2.6
2004	4	13	20	2004.2837	67.07	2.6
2004	4	27	20	2004.322	66.74	2.6
2004	4	27	20	2004.322	68.09	2.7
2004	4	27	20	2004.322	66.74	2.6
2004	5	4	20	2004.3412	62.27	2.6
2004	5	4	20	2004.3412	62.27	2.6
2004	5	11	15	2004.3597	63.67	2.6
2004	5	11	15	2004.3597	63.67	2.6
2004	5	25	16	2004.3981	60.69	2.6
2004	5	25	16	2004.3981	60.18	2.6
2004	5	25	16	2004.3981	60.69	2.6
2004	5	25	16	2004.3981	60.18	2.6
2004	6	8	16	2004.4363	66.39	2.6
2004	6	8	16	2004.4363	62.43	2.6
2004	6	8	16	2004.4363	66.39	2.6
2004	6	8	16	2004.4363	62.43	2.6
2004	6	29	18	2004.4939	68.54	2.6
2004	6	29	18	2004.4939	64.32	2.6
2004	6	29	18	2004.4939	68.54	2.6
2004	6	29	18	2004.4939	64.32	2.6
2004	7	13	19	2004.5323	71.36	2.6
2004	7	13	19	2004.5323	67.89	2.6
2004	7	13	19	2004.5323	71.36	2.6
2004	7	13	19	2004.5323	67.89	2.6
2004	7	27	15	2004.5701	64.19	2.6
2004	7	27	15	2004.5701	61.14	2.6
2004	7	27	15	2004.5701	64.19	2.6
2004	7	27	15	2004.5701	61.14	2.6
2004	8	10	17	2004.6086	63.15	2.6
2004	8	10	17	2004.6086	61.55	2.6
2004	8	10	17	2004.6086	63.15	2.6
2004	8	10	17	2004.6086	61.55	2.6
2004	8	24	19	2004.647	70.32	2.6
2004	8	24	19	2004.647	64.69	2.6
2004	8	24	19	2004.647	70.32	2.6
2004	8	24	19	2004.647	64.69	2.6

2004	9	7	19	2004.6852	69.67	2.7
2004	9	7	19	2004.6852	66.52	1.8
2004	9	7	19	2004.6852	69.67	2.7
2004	9	7	19	2004.6852	66.52	1.8
2004	9	28	20	2004.7428	62.55	2.7
2004	9	28	20	2004.7428	63.13	1.8
2004	9	28	20	2004.7428	62.55	2.7
2004	9	28	20	2004.7428	63.13	1.8
2004	10	12	17	2004.7807	63.38	2.74
2004	10	12	17	2004.7807	63.22	1.8
2004	10	12	17	2004.7807	63.38	2.74
2004	10	12	17	2004.7807	63.22	1.8
2004	10	26	19	2004.8192	63.54	2.7
2004	10	26	19	2004.8192	66.66	1.8
2004	10	26	19	2004.8192	63.54	2.7
2004	10	26	19	2004.8192	66.66	1.8
2004	11	9	22	2004.8577	64.03	2.7
2004	11	9	22	2004.8577	60.89	1.8
2004	11	9	22	2004.8577	64.03	2.7
2004	11	9	22	2004.8577	60.89	1.8
2004	11	23	22	2004.8959	62.41	2.7
2004	11	23	22	2004.8959	59.82	1.8
2004	11	23	22	2004.8959	62.41	2.7
2004	11	23	22	2004.8959	59.82	1.8
2004	12	7	22	2004.9343	61.34	2.9
2004	12	7	22	2004.9343	62.63	1.8
2004	12	7	22	2004.9343	61.34	2.9
2004	12	7	22	2004.9343	62.63	1.8
2005	1	17	21	2005.0463	60.04	2.73
2005	1	17	21	2005.0463	63.88	1.8
2005	1	17	21	2005.0463	60.04	2.73
2005	1	17	21	2005.0463	63.88	1.8
2005	2	8	22	2005.1066	57.84	2.7
2005	2	8	22	2005.1066	55.61	1.8
2005	2	8	22	2005.1066	57.84	2.7
2005	2	8	22	2005.1066	55.61	1.8
2005	3	8	21	2005.1833	58.32	2.7
2005	3	8	21	2005.1833	64.36	1.8
2005	3	8	21	2005.1833	58.32	2.7
2005	3	8	21	2005.1833	64.36	1.8
2005	3	22	22	2005.2217	58.35	2.7
2005	3	22	22	2005.2217	59.4	1.8
2005	3	22	22	2005.2217	58.35	2.7

2005	3	22	22	2005.2217	59.4	1.8
2005	4	5	19	2005.2598	54.95	2.7
2005	4	5	19	2005.2598	57.13	1.8
2005	4	5	19	2005.2598	54.95	2.7
2005	4	5	19	2005.2598	57.13	1.8
2005	4	19	20	2005.2983	57.57	2.7
2005	4	19	20	2005.2983	58.06	1.8
2005	4	19	20	2005.2983	57.57	2.7
2005	4	19	20	2005.2983	58.06	1.8
2005	5	31	18	2005.413	60.21	2.7
2005	5	31	18	2005.413	58.24	1.8
2005	5	31	18	2005.413	60.21	2.7
2005	5	31	18	2005.413	58.24	1.8
2005	6	14	18	2005.4515	53.6	2.7
2005	6	14	18	2005.4515	59.34	1.8
2005	6	14	18	2005.4515	53.6	2.7
2005	6	14	18	2005.4515	59.34	1.8
2005	6	14	18	2005.4515	53.6	2.7
2005	6	14	18	2005.4515	59.34	1.8
2005	7	5	14	2005.5085	58.97	1.8
2005	7	5	14	2005.5085	58.97	1.8
2005	7	12	17	2005.528	56.67	1.8
2005	7	12	17	2005.528	56.67	1.8
2005	7	19	15	2005.5469	60.2	1.8
2005	7	19	15	2005.5469	60.2	1.8
2005	7	26	15	2005.5661	60.73	1.8
2005	7	26	15	2005.5661	60.73	1.8
2005	8	2	14	2005.5852	60.8	1.8
2005	8	2	14	2005.5852	60.8	1.8
2005	8	9	15	2005.6045	56.98	1.8
2005	8	9	15	2005.6045	56.98	1.8
2005	8	16	17	2005.6239	65.12	2.18
2005	8	16	17	2005.6239	65.12	2.18
2005	8	23	15	2005.6428	57.48	1.8
2005	8	23	15	2005.6428	57.48	1.8
2005	8	30	16	2005.6621	58.08	1.8
2005	8	30	16	2005.6621	58.08	1.8
2005	9	6	16	2005.6813	59.07	1.8
2005	9	6	16	2005.6813	59.07	1.8
2005	9	13	16	2005.7005	57.67	1.8
2005	9	13	16	2005.7005	57.67	1.8
2005	9	27	17	2005.739	58.72	1.8
2005	9	27	17	2005.739	58.72	1.8

2005	10	4	15	2005.7579	58.46	1.8
2005	10	4	15	2005.7579	58.46	1.8
2005	10	12	14	2005.7798	56.99	1.8
2005	10	12	14	2005.7798	56.99	1.8
2005	10	12	14	2005.7798	56.99	1.8
2005	10	18	15	2005.7963	60.29	1.8
2005	10	18	15	2005.7963	60.29	1.8
2005	10	25	15	2005.8155	60.26	1.8
2005	10	25	15	2005.8155	60.26	1.8
2005	11	1	18	2005.835	58.16	1.8
2005	11	1	18	2005.835	58.16	1.8
2005	11	8	19	2005.8542	55.47	1.8
2005	11	8	19	2005.8542	55.47	1.8
2005	11	22	20	2005.8928	56.84	1.8
2005	11	22	20	2005.8928	56.84	1.8
2005	11	29	18	2005.9117	59.35	1.8
2005	11	29	18	2005.9117	59.35	1.8
2005	12	6	21	2005.9312	55.63	1.8
2005	12	6	21	2005.9312	55.63	1.8
2005	12	13	21	2005.9504	57.3	1.8
2005	12	13	21	2005.9504	57.3	1.8
2005	12	20	21	2005.9695	53.22	1.8
2005	12	20	21	2005.9695	53.22	1.8
2005	12	29	19	2005.9939	53.9	1.8
2005	12	29	19	2005.9939	53.9	1.8
2006	1	3	19	2006.0077	52.84	1.8
2006	1	3	19	2006.0077	52.84	1.8
2006	1	10	19	2006.0269	52.22	1.8
2006	1	10	19	2006.0269	52.22	1.8
2006	1	17	18	2006.046	55.62	1.8
2006	1	17	18	2006.046	55.62	1.8
2006	1	31	17	2006.0842	55.41	1.8
2006	1	31	17	2006.0842	55.41	1.8
2006	2	7	19	2006.1036	55.81	1.8
2006	2	7	19	2006.1036	55.81	1.8
2006	2	14	21	2006.1229	59.62	1.8
2006	2	14	21	2006.1229	59.62	1.8
2006	2	21	18	2006.1418	55.2	1.8
2006	2	21	18	2006.1418	55.2	1.8
2006	2	28	20	2006.1612	59.41	1.8
2006	2	28	20	2006.1612	59.41	1.8
2006	3	14	21	2006.1997	52.93	1.8
2006	3	14	21	2006.1997	52.93	1.8

2006	4	4	19	2006.257	57.94	1.8
2006	4	4	19	2006.257	57.94	1.8
2006	4	11	19	2006.2762	52.88	1.8
2006	4	11	19	2006.2762	52.88	1.8
2006	4	18	20	2006.2955	53.4	1.8
2006	4	18	20	2006.2955	53.4	1.8
2006	4	25	19	2006.3145	57.38	1.8
2006	4	25	19	2006.3145	57.38	1.8
2006	5	2	19	2006.3337	58.32	1.8
2006	5	2	19	2006.3337	58.32	1.8
2006	5	9	19	2006.3529	53.26	1.8
2006	5	9	19	2006.3529	53.26	1.8
2006	5	16	20	2006.3721	55.07	1.8
2006	5	16	20	2006.3721	55.07	1.8
2006	5	23	18	2006.3912	56.51	1.8
2006	5	23	18	2006.3912	56.51	1.8
2006	6	6	17	2006.4294	60.53	1.8
2006	6	6	17	2006.4294	60.53	1.8
2006	6	13	12	2006.448	59.34	1.8
2006	6	13	12	2006.448	59.34	1.8
2006	6	20	16	2006.4676	55.22	1.8
2006	6	20	16	2006.4676	55.22	1.8
2006	6	27	16	2006.4868	56.06	1.8
2006	6	27	16	2006.4868	56.06	1.8
2006	7	4	17	2006.5061	58.42	1.8
2006	7	4	17	2006.5061	58.42	1.8
2006	7	11	17	2006.5252	60.44	1.8
2006	7	11	17	2006.5252	60.44	1.8
2006	7	18	16	2006.5443	56.79	1.8
2006	7	18	16	2006.5443	56.79	1.8
2006	7	25	17	2006.5636	58	1.8
2006	7	25	17	2006.5636	58	1.8
2006	8	1	16	2006.5827	58.15	1.8
2006	8	1	16	2006.5827	58.15	1.8
2006	8	8	16	2006.6019	57.68	2.23
2006	8	8	16	2006.6019	57.68	2.23
2006	8	15	17	2006.6211	54.99	1.8
2006	8	15	17	2006.6211	54.99	1.8
2006	8	29	17	2006.6595	55	1.8
2006	8	29	17	2006.6595	55	1.8
2006	9	26	16	2006.7361	51.19	1.8
2006	9	26	16	2006.7361	51.19	1.8
2006	10	3	18	2006.7555	57.34	1.8

2006	10	3	18	2006.7555	57.34	1.8
2006	10	10	19	2006.7748	55.31	1.8
2006	10	10	19	2006.7748	55.31	1.8
2006	10	24	18	2006.8131	56.21	1.8
2006	10	24	18	2006.8131	56.21	1.8
2006	10	31	19	2006.8323	54.64	1.8
2006	10	31	19	2006.8323	54.64	1.8
2006	11	7	18	2006.8515	55.05	1.8
2006	11	7	18	2006.8515	55.05	1.8
2006	11	21	20	2006.89	52.64	1.8
2006	11	21	20	2006.89	52.64	1.8
2006	11	28	18	2006.9089	48.39	1.8
2006	11	28	18	2006.9089	48.39	1.8
2006	12	5	19	2006.9283	54.6	1.8
2006	12	5	19	2006.9283	54.6	1.8
2006	12	12	19	2006.9474	52.89	1.8
2006	12	12	19	2006.9474	52.89	1.8
2006	12	19	20	2006.9667	51.46	1.8
2006	12	19	20	2006.9667	51.46	1.8
2006	12	27	22	2006.9889	55.18	1.95
2006	12	27	22	2006.9889	55.18	1.95
2007	1	9	20	2007.0243	54.91	1.8
2007	1	9	20	2007.0243	54.91	1.8
2007	1	23	19	2007.0625	53.01	1.8
2007	1	23	19	2007.0625	53.01	1.8
2007	1	30	21	2007.082	48.69	1.8
2007	1	30	21	2007.082	48.69	1.8
2007	2	6	21	2007.1011	56.3	1.8
2007	2	6	21	2007.1011	54.17	1.8
2007	2	6	21	2007.1011	56.3	1.8
2007	2	6	21	2007.1011	54.17	1.8
2007	2	27	17	2007.1582	53.39	1.8
2007	2	27	17	2007.1582	53.39	1.8
2007	3	6	22	2007.1779	51.37	1.8
2007	3	6	22	2007.1779	51.37	1.8
2007	3	13	17	2007.1965	51.07	1.9
2007	3	13	17	2007.1965	51.07	1.9
2007	3	20	20	2007.216	52.37	1.8
2007	3	20	20	2007.216	52.37	1.8
2007	3	27	20	2007.2352	48.05	1.8
2007	3	27	20	2007.2352	48.05	1.8
2007	4	3	20	2007.2543	45.98	2.07
2007	4	3	20	2007.2543	45.98	2.07

2007	4	10	21	2007.2737	46.45	2.02
2007	4	10	21	2007.2737	46.45	2.02
2007	4	17	19	2007.2927	50.41	1.8
2007	4	17	19	2007.2927	50.41	1.8
2007	4	24	19	2007.3119	48.95	1.8
2007	4	24	19	2007.3119	48.95	1.8
2007	5	8	15	2007.3497	51.65	1.8
2007	5	8	15	2007.3497	51.65	1.8
2007	5	15	17	2007.3691	49.53	1.8
2007	5	15	17	2007.3691	49.53	1.8
2007	5	22	17	2007.3883	52.41	1.8
2007	5	22	17	2007.3883	52.41	1.8
2007	5	29	19	2007.4077	48.82	1.85
2007	5	29	19	2007.4077	48.82	1.85
2007	6	5	21	2007.4272	51.11	1.8
2007	6	5	21	2007.4272	51.11	1.8
2007	6	12	17	2007.4459	52.13	1.8
2007	6	12	17	2007.4459	52.13	1.8
2007	6	12	17	2007.4459	52.13	1.8
2007	6	19	22	2007.4655	50.28	1.8
2007	6	19	22	2007.4655	50.28	1.8
2007	7	3	14	2007.503	47.24	1.8
2007	7	3	14	2007.503	47.24	1.8
2007	7	10	16	2007.5224	52.9	1.8
2007	7	10	16	2007.5224	52.9	1.8
2007	7	17	17	2007.5417	50.76	1.8
2007	7	17	17	2007.5417	50.76	1.8
2007	7	24	16	2007.5608	52.69	1.8
2007	7	24	16	2007.5608	52.69	1.8
2007	8	7	18	2007.5993	47.55	1.8
2007	8	7	18	2007.5993	47.55	1.8
2007	8	14	16	2007.6183	51.33	1.8
2007	8	14	16	2007.6183	51.33	1.8
2007	8	21	16	2007.6375	51.93	2.26
2007	8	21	16	2007.6375	51.93	2.26
2007	8	28	17	2007.6568	52.08	2.28
2007	8	28	17	2007.6568	52.08	2.28
2007	9	4	16	2007.6758	49.03	2.17
2007	9	4	16	2007.6758	49.03	2.17
2007	9	18	21	2007.7148	54.57	2.14
2007	9	18	21	2007.7148	54.57	2.14
2007	9	25	18	2007.7337	51.85	2.11
2007	9	25	18	2007.7337	51.85	2.11

2007	10	2	18	2007.7528	51.79	2.12
2007	10	2	18	2007.7528	51.79	2.12
2007	10	9	15	2007.7717	51.65	2.06
2007	10	9	15	2007.7717	51.65	2.06
2007	10	16	21	2007.7915	50.96	2.06
2007	10	16	21	2007.7915	50.96	2.06
2007	10	23	20	2007.8106	49.74	2.14
2007	10	23	20	2007.8106	49.74	2.14
2007	10	30	17	2007.8294	50.95	2.06
2007	10	30	17	2007.8294	50.95	2.06
2007	11	6	19	2007.8489	51.02	2.06
2007	11	6	19	2007.8489	51.02	2.06
2007	11	13	20	2007.8681	43.64	2.07
2007	11	13	20	2007.8681	43.64	2.07
2007	11	20	20	2007.8873	48.82	2.06
2007	11	20	20	2007.8873	48.82	2.06
2007	11	27	18	2007.9063	54.21	2.07
2007	11	27	18	2007.9063	54.21	2.07
2007	12	4	20	2007.9257	51.91	2.07
2007	12	4	20	2007.9257	51.91	2.07
2008	1	2	20	2008.005	53.02	2.14
2008	1	2	20	2008.005	53.02	2.14
2008	1	8	22	2008.0217	48.78	2.11
2008	1	8	22	2008.0217	48.78	2.11
2008	1	23	22	2008.0627	43.04	2.04
2008	1	23	22	2008.0627	43.04	2.04
2008	1	29	21	2008.0789	44.66	2.05
2008	1	29	21	2008.0789	44.66	2.05
2008	2	5	21	2008.098	44.43	2.04
2008	2	5	21	2008.098	44.43	2.04
2008	2	12	19	2008.117	48.62	2.28
2008	2	12	19	2008.117	48.62	2.28
2008	2	19	23	2008.1366	48.32	2.08
2008	2	19	23	2008.1366	48.32	2.08
2008	2	26	21	2008.1555	48.05	1.82
2008	2	26	21	2008.1555	48.05	1.82
2008	2	26	21	2008.1555	48.05	1.82
2008	3	11	19	2008.1934	48.76	1.8
2008	3	11	19	2008.1934	48.76	1.8
2008	3	25	19	2008.2317	48.38	1.8
2008	3	25	19	2008.2317	48.38	1.8
2008	4	1	19	2008.2509	46.87	1.85
2008	4	1	19	2008.2509	46.87	1.85

2008	4	8	20	2008.2701	46.67	1.8
2008	4	8	20	2008.2701	46.67	1.8
2008	4	15	19	2008.2891	49.09	2.03
2008	4	15	19	2008.2891	49.09	2.03
2008	4	22	19	2008.3082	47.21	1.89
2008	4	22	19	2008.3082	47.21	1.89
2008	4	29	18	2008.3273	43.42	1.8
2008	4	29	18	2008.3273	43.42	1.8
2008	5	6	17	2008.3463	46.28	1.8
2008	5	6	17	2008.3463	46.28	1.8
2008	5	13	18	2008.3655	48.05	2.13
2008	5	13	18	2008.3655	48.05	2.13
2008	5	20	12	2008.3839	47.94	1.8
2008	5	20	12	2008.3839	47.94	1.8
2008	6	3	21	2008.4232	47.85	1.8
2008	6	3	21	2008.4232	47.85	1.8
2008	6	10	17	2008.4419	49.36	1.8
2008	6	10	17	2008.4419	49.36	1.8
2008	6	17	16	2008.4609	45.91	1.8
2008	6	17	16	2008.4609	45.91	1.8
2008	6	24	16	2008.48	49.36	1.8
2008	6	24	16	2008.48	49.36	1.8
2008	7	1	18	2008.4994	48.08	1.84
2008	7	1	18	2008.4994	48.08	1.84
2008	7	8	17	2008.5184	48.34	1.9
2008	7	8	17	2008.5184	48.34	1.9
2008	7	22	16	2008.5566	45.96	1.8
2008	7	22	16	2008.5566	45.96	1.8
2008	8	5	18	2008.595	48.86	1.8
2008	8	5	18	2008.595	48.86	1.8
2008	8	12	15	2008.6138	48.76	1.8
2008	8	12	15	2008.6138	48.76	1.8
2008	8	19	17	2008.6332	45.93	1.8
2008	8	19	17	2008.6332	45.93	1.8
2008	8	26	21	2008.6527	48.57	1.8
2008	8	26	21	2008.6527	48.57	1.8
2008	9	9	20	2008.6908	43.84	1.8
2008	9	9	20	2008.6908	43.84	1.8
2008	9	23	15	2008.7285	47.18	1.85
2008	9	23	15	2008.7285	47.18	1.85
2008	9	30	22	2008.7484	45.85	1.8
2008	9	30	22	2008.7484	45.85	1.8
2008	10	7	18	2008.7671	48.51	1.8

2008	10	7	18	2008.7671	48.51	1.8
2008	10	14	22	2008.7867	49.28	1.8
2008	10	14	22	2008.7867	49.28	1.8
2008	10	21	18	2008.8053	44.21	1.8
2008	10	21	18	2008.8053	44.21	1.8
2008	10	28	19	2008.8247	43.29	1.8
2008	10	28	19	2008.8247	43.29	1.8
2008	11	4	19	2008.8437	42.8	1.8
2008	11	4	19	2008.8437	42.8	1.8
2008	11	11	22	2008.8632	46.52	1.8
2008	11	11	22	2008.8632	46.52	1.8
2008	11	18	21	2008.8822	46.09	1.8
2008	11	18	21	2008.8822	46.09	1.8
2008	11	24	20	2008.8985	44.11	1.8
2008	11	24	20	2008.8985	44.11	1.8
2008	12	2	23	2008.9207	45.97	1.8
2008	12	2	23	2008.9207	45.97	1.8
2008	12	30	21	2008.997	47.36	1.8
2008	12	30	21	2008.997	47.36	1.8
2009	1	13	22	2009.0354	46.21	1.8
2009	1	13	22	2009.0354	46.21	1.8
2009	1	20	22	2009.0546	45.08	1.8
2009	1	20	22	2009.0546	45.08	1.8
2009	1	27	21	2009.0736	45.09	1.8
2009	1	27	21	2009.0736	45.09	1.8
2009	2	3	19	2009.0927	43.26	1.8
2009	2	3	19	2009.0927	43.26	1.8
2009	2	17	18	2009.1309	46.2	1.8
2009	2	17	18	2009.1309	46.2	1.8
2009	3	3	21	2009.1696	44.45	1.8
2009	3	3	21	2009.1696	44.45	1.8
2009	3	10	17	2009.1884	43	1.8
2009	3	10	17	2009.1884	43	1.8
2009	3	10	17	2009.1884	43	1.8
2009	3	17	18	2009.2076	45.42	1.8
2009	3	17	18	2009.2076	45.42	1.8
2009	3	24	23	2009.2273	42.22	1.8
2009	3	24	23	2009.2273	42.22	1.8
2009	3	31	21	2009.2463	42.4	1.8
2009	3	31	21	2009.2463	42.4	1.8
2009	4	14	17	2009.2842	41.7	1.8
2009	4	14	17	2009.2842	41.7	1.8
2009	4	21	22	2009.3039	43.81	1.8

2009	4	21	22	2009.3039	43.81	1.8
2009	4	28	23	2009.3232	45.56	1.8
2009	4	28	23	2009.3232	45.56	1.8
2009	5	5	20	2009.3421	45.14	1.8
2009	5	5	20	2009.3421	45.14	1.8
2009	5	13	2	2009.3619	43.15	1.8
2009	5	13	2	2009.3619	43.15	1.8
2009	5	19	22	2009.3806	44.12	1.8
2009	5	19	22	2009.3806	44.12	1.8
2009	5	26	17	2009.3993	44.3	1.8
2009	5	26	17	2009.3993	44.3	1.8
2009	6	9	18	2009.4377	43.69	1.8
2009	6	9	18	2009.4377	43.69	1.8
2009	6	16	18	2009.4569	43.1	1.8
2009	6	16	18	2009.4569	43.1	1.8
2009	6	23	16	2009.4759	45.32	1.8
2009	6	23	16	2009.4759	45.32	1.8
2009	6	30	16	2009.4951	44.49	1.8
2009	6	30	16	2009.4951	44.49	1.8
2009	7	7	19	2009.5145	46.62	1.8
2009	7	7	19	2009.5145	46.62	1.8
2009	7	14	17	2009.5335	46.15	1.8
2009	7	14	17	2009.5335	46.15	1.8
2009	7	21	19	2009.5529	41.19	1.8
2009	7	21	19	2009.5529	41.19	1.8
2009	7	28	16	2009.5717	40.15	1.8
2009	7	28	16	2009.5717	40.15	1.8
2009	8	4	17	2009.591	44.25	1.8
2009	8	4	17	2009.591	44.25	1.8
2009	8	18	21	2009.6298	43.15	1.8
2009	8	18	21	2009.6298	43.15	1.8
2009	8	25	16	2009.6485	42.68	1.8
2009	8	25	16	2009.6485	42.68	1.8
2009	9	1	19	2009.668	41.07	1.8
2009	9	1	19	2009.668	41.07	1.8
2009	9	8	18	2009.6871	41.25	1.8
2009	9	8	18	2009.6871	41.25	1.8
2009	9	15	18	2009.7062	37.51	1.8
2009	9	15	18	2009.7062	37.51	1.8
2009	9	22	19	2009.7255	43.57	1.8
2009	9	22	19	2009.7255	43.57	1.8
2009	9	29	19	2009.7447	40.82	1.8
2009	9	29	19	2009.7447	40.82	1.8

2009	10	6	19	2009.7639	42.8	1.8
2009	10	6	19	2009.7639	42.8	1.8
2009	10	13	20	2009.7831	45.69	1.8
2009	10	13	20	2009.7831	45.69	1.8
2009	10	20	21	2009.8025	41	1.8
2009	10	20	21	2009.8025	41	1.8
2009	11	2	19	2009.8378	40.42	1.8
2009	11	2	19	2009.8378	40.42	1.8
2009	11	10	19	2009.8598	43.28	1.8
2009	11	10	19	2009.8598	43.28	1.8
2009	11	17	21	2009.8792	45.01	1.8
2009	11	17	21	2009.8792	45.01	1.8
2009	11	24	19	2009.8981	40.75	1.8
2009	11	24	19	2009.8981	40.75	1.8
2009	12	1	20	2009.9174	42.24	1.8
2009	12	1	20	2009.9174	42.24	1.8
2009	12	8	22	2009.9368	38.99	1.8
2009	12	8	22	2009.9368	38.99	1.8
2009	12	15	21	2009.9558	42.54	1.8
2009	12	15	21	2009.9558	42.54	1.8
2009	12	22	18	2009.9748	42.4	1.8
2009	12	22	18	2009.9748	42.4	1.8
2009	12	29	21	2009.9942	41.78	1.8
2009	12	29	21	2009.9942	41.78	1.8
2010	1	5	20	2010.0133	39.15	1.8
2010	1	5	20	2010.0133	39.15	1.8
2010	1	12	23	2010.0328	39.1	1.8
2010	1	12	23	2010.0328	39.1	1.8
2010	1	19	22	2010.0518	39.53	1.8
2010	1	19	22	2010.0518	39.53	1.8
2010	1	26	20	2010.0708	43	1.8
2010	1	26	20	2010.0708	43	1.8
2010	2	2	22	2010.0903	37.91	1.8
2010	2	2	22	2010.0903	37.91	1.8
2010	2	16	22	2010.1286	36.12	1.8
2010	2	16	22	2010.1286	36.12	1.8
2010	2	23	20	2010.1476	38.77	1.8
2010	2	23	20	2010.1476	38.77	1.8
2010	3	2	21	2010.1668	42.47	1.8
2010	3	2	21	2010.1668	42.47	1.8
2010	3	9	22	2010.1861	38.04	1.8
2010	3	9	22	2010.1861	38.04	1.8
2010	3	23	20	2010.2242	32.55	1.8

2010	3	23	20	2010.2242	32.55	1.8
2010	4	8	20	2010.2681	39.12	1.8
2010	4	8	20	2010.2681	39.12	1.8
2010	4	13	19	2010.2817	37.89	1.83
2010	4	13	19	2010.2817	37.89	1.83
2010	4	20	20	2010.301	42.61	1.8
2010	4	20	20	2010.301	42.61	1.8
2010	4	27	21	2010.3202	42.43	1.8
2010	4	27	21	2010.3202	42.43	1.8
2010	5	4	21	2010.3394	39.21	1.8
2010	5	4	21	2010.3394	39.21	1.8
2010	6	1	19	2010.4159	38.54	1.8
2010	6	1	19	2010.4159	38.54	1.8
2010	6	8	19	2010.4351	38.88	1.8
2010	6	8	19	2010.4351	38.88	1.8
2010	6	15	17	2010.454	40.43	1.8
2010	6	15	17	2010.454	40.43	1.8
2010	6	22	17	2010.4732	41.28	1.8
2010	6	22	17	2010.4732	41.28	1.8
2010	6	29	16	2010.4923	36.1	1.8
2010	6	29	16	2010.4923	36.1	1.8
2010	7	13	17	2010.5307	38.8	1.8
2010	7	13	17	2010.5307	38.8	1.8
2010	7	20	17	2010.5499	39.32	1.8
2010	7	20	17	2010.5499	39.32	1.8
2010	7	27	16	2010.569	39.58	1.8
2010	7	27	16	2010.569	39.58	1.8
2010	8	3	19	2010.5885	38.5	1.8
2010	8	3	19	2010.5885	38.5	1.8
2010	8	10	20	2010.6078	38.6	1.8
2010	8	10	20	2010.6078	38.6	1.8
2010	8	17	16	2010.6266	39.59	1.8
2010	8	17	16	2010.6266	39.59	1.8
2010	8	31	19	2010.6652	40.15	1.8
2010	8	31	19	2010.6652	40.15	1.8
2010	9	7	18	2010.6842	42.31	1.8
2010	9	7	18	2010.6842	42.31	1.8
2010	9	14	19	2010.7036	40.06	1.8
2010	9	14	19	2010.7036	40.06	1.8
2010	9	21	20	2010.7229	39.89	1.8
2010	9	21	20	2010.7229	39.89	1.8
2010	10	5	21	2010.7613	35.43	1.8
2010	10	5	21	2010.7613	35.43	1.8

2010	10	12	17	2010.7801	35.63	1.8
2010	10	12	17	2010.7801	35.63	1.8
2010	10	19	17	2010.7992	38.48	1.8
2010	10	19	17	2010.7992	38.48	1.8
2010	10	26	20	2010.8188	37.05	1.8
2010	10	26	20	2010.8188	37.05	1.8
2010	11	2	17	2010.8376	40.59	1.8
2010	11	2	17	2010.8376	40.59	1.8
2010	11	16	21	2010.8765	35.22	1.8
2010	11	16	21	2010.8765	35.22	1.8
2010	11	23	22	2010.8957	38.28	1.8
2010	11	23	22	2010.8957	38.28	1.8
2010	11	30	21	2010.9148	37.28	1.84
2010	11	30	21	2010.9148	37.28	1.84
2010	12	7	22	2010.9341	36.87	1.8
2010	12	7	22	2010.9341	36.87	1.8
2010	12	14	22	2010.9533	35.91	1.8
2010	12	14	22	2010.9533	35.91	1.8
2010	12	21	17	2010.9719	37.72	1.8
2010	12	21	17	2010.9719	37.72	1.8
2010	12	28	18	2010.9912	38.37	1.8
2010	12	28	18	2010.9912	38.37	1.8
2011	1	4	19	2011.0105	36.24	1.81
2011	1	4	19	2011.0105	36.24	1.81
2011	1	11	22	2011.0299	32.6	1.8
2011	1	11	22	2011.0299	32.6	1.8
2011	1	18	20	2011.049	32.53	1.8
2011	1	18	20	2011.049	32.53	1.8
2011	1	25	17	2011.0678	37.9	1.8
2011	1	25	17	2011.0678	37.9	1.8
2011	2	14	18	2011.1226	36.21	1.8
2011	2	14	18	2011.1226	36.21	1.8
2011	2	22	21	2011.1449	39.17	1.8
2011	2	22	21	2011.1449	39.17	1.8
2011	2	28	22	2011.1614	35.37	1.8
2011	2	28	22	2011.1614	35.37	1.8
2011	3	9	20	2011.1859	29.26	1.81
2011	3	9	20	2011.1859	29.26	1.81
2011	3	15	18	2011.2021	37.22	1.8
2011	3	15	18	2011.2021	37.22	1.8
2011	3	22	20	2011.2215	34.76	1.8
2011	3	22	20	2011.2215	34.76	1.8
2011	3	29	18	2011.2405	32.03	1.8

2011	3	29	18	2011.2405	32.03	1.8
2011	4	5	18	2011.2596	38.49	1.8
2011	4	5	18	2011.2596	38.49	1.8
2011	4	19	17	2011.2979	36.03	1.8
2011	4	19	17	2011.2979	36.03	1.8
2011	5	3	22	2011.3368	36.44	1.8
2011	5	3	22	2011.3368	36.44	1.8