Surface Radiation Measurement QC tests, including user configurable climatological tests, V1.0

C. N. Long, Pacific Northwest National Laboratory, Richland, WA, USA

Define:

SZA = solar zenith angle

 $\mu_0 = Cos(SZA)$

NOTE: In the formulas below, if SZA > 90° , μ_0 is set to 0.0 in the formula

 S_0 = solar constant at mean Earth-Sun distance

AU = Earth – Sun distance in Astronomical Units [1 AU = mean E-S distance]

 $S_a = S_0/AU^2 =$ solar constant adjusted for Earth – Sun distance

Sum SW = [Diffuse SW + (Direct Normal SW) x μ_0]

 σ = Stephan-Boltzman constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴

 T_a = air temperature in Kelvin [must be in range 170K < T_a < 350K]

 T_d = pyrgeometer dome temperature

 T_c = pyrgeometer case temperature

T_{snw} = temperature limit for albedo limit test, temp at which "snow" limit is allowed

Global SWdn: SW measured by unshaded pyranometer

Diffuse SW: SW measured by shaded pyranometer

Direct Normal SW: direct normal component of SW

Direct SW: direct normal component of SW times the cosine of SZA

[(Direct Normal SW) x μ_0]

LW_{dn}: downwelling LW measured by a pyrgeometer

LW_{up}: upwelling LW measured by a pyrgeometer

Prs: surface station pressure in millibars (NOT adjusted to sea level)

NOTE:

If the input data includes pyrgeometer case and dome temperatures, and/or air temperature, then these temperatures are tested by:

$$T_{min} < T_x < T_{max}$$

Where T_{min} and T_{max} are user defined using climatological data.

Then if each T_c - T_d pair is within +/- 10 K of each other, the average of all T_c and T_d is calculated.

 T_a must fall within +/- 20 K of this average and each individual T_c and T_d must fall within +/- 15 K of this average, else set to -999.

It is recommended that these tests be performed in the order listed to achieve maximum benefit and minimum impact for "missing" or "bad" cases of some values.

Physically Possible Limits [Global] per BSRN (QC Flags set to 5 or 6)

Global SWdn

Min: -4 Wm⁻²

Max: $S_a \times 1.5 \times \mu_0^{1.2} + 100 \text{ Wm}^{-2}$

Diffuse SW

Min: -4 Wm⁻²

Max: $S_a \times 0.95 \times \mu_0^{1.2} + 50 \text{ Wm}^{-2}$

Direct Normal SW

Min: -4 Wm⁻²

Max: S_a

[for Direct SW, Max: $S_a \times \mu_0$]

SWup

Min: -4 Wm⁻²

Max: $S_a \times 1.2 \times \mu_0^{1.2} + 50 \text{ Wm}^{-2}$

LWdn

Min: 40 Wm⁻²

Max: 700 Wm⁻²

LWup

Min: 40 Wm⁻²

Max: 900 Wm⁻²

Extremely Rare Minimum Limits [Global] per BSRN (QC Flags set to 3)

Global SWdn

Min: -2 Wm⁻²

Diffuse SW

Min: -2 Wm⁻²

Direct Normal SW

Min: -2 Wm⁻²

<u>SWup</u>

Min: -2 Wm⁻²

Comparisons [Global] per BSRN

Ratio of Global over Sum SW:

(Global)/(Sum SW) should be within +/- 8% of 1.0 for SZA < 75° , Sum > 50 Wm⁻² (Global)/(Sum SW) should be within +/- 15% of 1.0 for 93° > SZA > 75° , Sum > 50 Wm⁻² For Sum SW < 50 Wm⁻², test not possible

Diffuse Ratio:

 $\overline{\text{(Dif SW)/(Global SW)}}$ < 1.05 for SZA < 75°, GSW > 50 Wm⁻² (Dif SW)/(Global SW) < 1.10 for 93° > SZA > 75°, GSW > 50 Wm⁻² For Global SW < 50 Wm⁻², test not possible

SWup comparison

SWup < (Sum SW) [or Global SW if Sum SW missing or "bad"]
For Sum SW [or Global SW] > 50 Wm⁻²
For Sum SW [or Global SW] < 50 Wm⁻², test not possible
If SWup > (Sum SW) AND SWup > (Global SW), Swup = "bad"

Climatological (Configurable) Limits

Global SWdn

Max: $S_a \times D_1 \times \mu_0^{1.2} + 55 \text{ Wm}^{-2} (2^{\text{nd}} \text{ level})$ Max: $S_a \times C_1 \times \mu_0^{1.2} + 50 \text{ Wm}^{-2} (1^{\text{st}} \text{ level})$

Diffuse SW

Max: $S_a \times D_2 \times \mu_0^{1.2} + 35 \text{ Wm}^{-2} (2^{\text{nd}} \text{ level})$ Max: $S_a \times C_2 \times \mu_0^{1.2} + 30 \text{ Wm}^{-2} (1^{\text{st}} \text{ level})$

Direct Normal SW

Max: $S_a \times D_3 \times \mu_0^{0.2} + 15 \text{ Wm}^{-2} (2^{\text{nd}} \text{ level})$ [for Dir, Max: $S_a \times D_3 \times \mu_0^{1.2} + 15 \text{ Wm}^{-2}] (2^{\text{nd}} \text{ level})$ Max: $S_a \times C_3 \times \mu_0^{0.2} + 10 \text{ Wm}^{-2} (1^{\text{st}} \text{ level})$ [for Dir, Max: $S_a \times C_3 \times \mu_0^{1.2} + 10 \text{ Wm}^{-2}] (1^{\text{st}} \text{ level})$

SWup

Max: $S_a \times D_4 \times \mu_0^{1.2} + 55 \text{ Wm}^{-2} (2^{\text{nd}} \text{ level})$ Max: $S_a \times C_4 \times \mu_0^{1.2} + 50 \text{ Wm}^{-2} (1^{\text{st}} \text{ level})$

LWdn

Min: D_5 Wm⁻² (2nd level) Max: D_6 Wm⁻² (2nd level) Min: C_5 Wm⁻² (1st level) Max: C_6 Wm⁻² (1st level)

LWup

Min: D_7 Wm⁻² (2nd level) Max: D_8 Wm⁻² (2nd level) Min: C_7 Wm⁻² (1st level) Max: C_8 Wm⁻² (1st level)

Climatological (Configurable) Comparisons

"Tracker off" test

Using ClrSW = $[\mathbf{a}/\mathrm{AU^2}] \times \mu_0^{\mathbf{b}}$, where "a" and "b" are configured by user Then for dif > 50 Wm⁻²,

if (Sum SW)/ClrSW > 0.85 [or Global SW if Sum SW missing or "bad"] AND if Dif/(Sum SW) > 0.85 [or Global SW if Sum SW missing or "bad"] Then the tracker is not properly following the sun

Rayleigh Limit Diffuse Comparison

Rayleigh (R_L) diffuse SW is estimated using:

$$R_L = a\mu_0 + b\mu_0^2 + c\mu_0^3 + d\mu_0^4 + e\mu_0^5 + f\mu_0 Prs$$

Where:

a = 209.3

b = -708.3

c = 1128.7

d = -911.2

e = 287.85

f = 0.046725

 μ_0 = cosine of the solar zenith angle

Prs = station surface pressure in millibars

If Global SW is greater than 50 Wm^{-2} , and (Diffuse SW)/(Global SW) is less than 0.8, and diffuse SW is less than (R_L-1.0), then diffuse is set to "bad", QC2 is set to "8"

SWup comparison

SWup < C_x x (Sum SW) + 25 Wm⁻² [or Global SW if Sum SW missing or "bad"]

For Sum SW [or Global SW] > 50 Wm⁻²

For Sum SW [or Global SW] < 50 Wm⁻², test not possible

 D_9 and C_9 if $T_a > T_{snw}$ limit ("normal" ground cover)

 D_{10} and C_{10} if $T_a < T_{snw}$ limit (ground may be "snow covered")

NOTE: if limit greater than Sum SW+25, set equal to Sum SW +25

[or Global SW if Sum SW missing or "bad"]

 T_{snw} = Temperature limit for test, degrees C, > 0° C

LWdn to Air Temperature comparison

$$D_{11} \times \sigma T_a^4 < LWdn < \sigma T_a^4 + D_{12} (2^{nd} level)$$

$$C_{11} \times \sigma T_a^4 < LWdn < \sigma T_a^4 + C_{12} (1^{st} level)$$

LWup to Air Temperature comparison

$$\sigma(T_a - D_{13} K)^4 < LWup < \sigma(T_a + D_{14} K)^4$$
 (2nd level)

$$\sigma(T_a - C_{13} K)^4 < LWup < \sigma(T_a + C_{14} K)^4 (1^{st} level)$$

$$\begin{array}{l} \underline{LWdn~to~LWup~comparison} \\ LWup - D_{15}~Wm^{-2} < LWdn < LWup + D_{16}~Wm^{-2}~~(2^{nd}~level) \\ LWup - C_{15}~Wm^{-2} < LWdn < LWup + C_{16}~Wm^{-2}~~(1^{st}~level) \end{array}$$

Test/Compare Ta, Tc, Td

$$\begin{split} T_a - C_{17} < T_x < T_a + C_{17} & \text{ (1st level)} \\ & \text{ (for both LW}_{dn} \text{ and LW}_{up} \text{ instruments. If have all 3, can determine "bad" one)} \\ & \text{If } T_a \text{ not available, test not possible.} \end{split}$$

$$C_{18}$$
 <= $(T_c$ - $T_d)$ < C_{19}
If either T_c and T_d "bad", test not possible.