
! » ccgfilt — Curve fi!ng and filtering

ccgfilt — Curve fitting and filtering

Class for compu"ng the curve fi!ng/smoothing technique used by Thoning et al 1989 and at
h#p://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/

The class is available by using the ‘import’ statement to include it in your python code:

import ccg_filter

This technique uses the following step:

1. Fit a func"on consis"ng of a polynomial and harmonics to the data
2. Smooth the residuals from the func"on fit with a low-pass filter using $ and user defined

cutoff value.
3. Calculate the inverse $ of the low-pass filter to get smoothed data in "me domain.
4. Determine the smoothed curve of interest by combining the func"on with the filtered data.

The func"on to be fit to the data is specified in the rou"nes ‘fitFunc’ and ‘harmonics’.

Calculate the func"on at "me x with coefficients given in params. This is a combina"on of a
polynomial with numpoly coefficients, and a sin/cosine harmonic with numharm coefficients.
e.g., with numpoly=3 and numharm=2:

(1)¶

where a = params[0], b = params[1], c = params[2], d = params[3] …

harmonics(params, x, numpoly, numharm)

calculate the harmonic part of the function at time x

ccg_filter Objects

ccg_filter.fitFunc(params, x, numpoly, numharm)

Parameters: xp (numpy array) – Time values for input data. These must be decimal
dates, such as produced by dates.decimalDate() .
yp (numpy array) – Dependent values for input data.
shor!erm (int) – Short term cutoff value in days for smoothing of data.
longterm (int) – Long term cutoff value in days for extrac"ng trend from
data
sampleinterval (int) – Interval in days between samples, calculate
equally spaced values at this interval. Default is calculated from xp
numpoly (int) – Number of polynomial terms used in func"on fit - e.g. 3
= quadra"c
numharm (int) – Number of harmonics used in func"on fit
"mezero (float) – Value where x = 0 in the func"on coefficients. If
"mezero = -1, it will be reset to the year of the first data point.
gap (float) – When determining equally spaced values for the $, if gap
!= 0, then gap is the number of days between samples that should be
filled in with values from the func"on, rather than linear interpolated.
use_gain_factor (boolean) – Set to True if you want to include a gain
factor to the harmonic amplitude. This means the harmonics part of the
func"on will have a linearly increasing or decreasing amplitude with
"me.
debug (boolean) – If true, print out extra informa"on during
calcula"ons.

Only xp and yp are required, all others are op"onal.

Class attributes:

Input Data

(numpy array) Time value for input data

(numpy array) Dependent values for input data

class ccg_filter.ccgFilter(xp, yp [, shor!erm=80, longterm=667, sampleinterval=0,
numpolyterms=3, numharmonics=4, "mezero = -1, gap=0, use_gain_factor=False, debug=False])

ccg_filter.xp

ccg_filter.yp

ccg_filter.np

(int) Number of points in xp, yp

(numpy array) Equally spaced interpolated values from input data

For the function fit

(int) Number of polynomial terms used in func"on fit - e.g. 3 = quadra"c

(int) Number of harmonics used in func"on fit

(float) Value where x = 0 in the func"on coefficients

(numpy array) Parameters (coefficients) for the func"on fit

(numpy array) Covariance values of the parameters

(int) Total number of parameters in the func"on

(numpy array) Residuals from func"on fit for "mes specified in input array xp

(numpy array) Equally spaced interpolated values of the residuals from the func"ons fit for
"mes specified in array xinterp

For the filter

(int) Interval in days between equally spaced points used in the $

ccg_filter.xinterp

ccg_filter.numpoly

ccg_filter.numharm

ccg_filter.timezero

ccg_filter.params

ccg_filter.covar

ccg_filter.numpm

ccg_filter.resid

ccg_filter.yinterp

ccg_filter.sampleinterval

(float) Sample interval in decimal years

(int) Short term cutoff value in days for smoothing of data

(int) Long term cutoff value in days for extrac"ng trend from data

(numpy array) smoothed results from applying short term cutoff filter to residuals of data
from the func"on. Equally spaced at xinterp

(numpy array) trend results from applying long term cutoff filter to residuals of data from the
func"on. Equally spaced at xinterp

(numpy array) deriva"ve of func"on + trend. Equally spaced at xinterp

(int) number of points in each of xinterp, smooth, trend

Misc.

(float) Standard devia"on of residuals about func"on

(float) Standard devia"on of residuals about smooth curve

(boolean) Flag for showing addi"onal informa"on during computa"on

Methods

ccg_filter.dinterval

ccg_filter.shortterm

ccg_filter.longterm

ccg_filter.smooth

ccg_filter.trend

ccg_filter.deriv

ccg_filter.ninterp

ccg_filter.rsd1

ccg_filter.rsd2

ccg_filter.debug

For each of the methods below, the input value x can be a single point, a list, or a numpy array

Returns the value of the func"on part of the filter at "me x.

Returns the ‘smoothed’ data at "me x. This is func"on + self.smooth

Returns the ‘trend’ of the data at "me x. This is polynomial part of func"on + self.trend

Returns the value of the harmonic part of the func"on at "me x.

Returns the value of the polynomial part of the func"on at "me x

Get seasonal cycle amplitudes. Returns a list of tuples, each tuple has 6 values
(year, total_amplitude, max_date, max_value, min_date, min_value)

Returns the value of the filter for frequencies 0 - 10 cycles/year at given cutoff

Return a list of tuples containing monthy means from the smoothed curve. The value of the
curve is computed at every sample interval, then summed up for each month and the
average computed. Each tuple contains 5 values, (year, month, average, std.dev., n)

Get the decimal dates when the smoothed curve crosses the trend curve. That is, when the
detrended smooth seasonal cycle crosses 0. Use the dates.calendarDate() func"on to
convert from decimal date to calendar date.

Examples

ccg_filter.getFunctionValue(x)

ccg_filter.getSmoothValue(x)

ccg_filter.getTrendValue(x)

ccg_filter.getHarmonicValue(x)

ccg_filter.getPolyValue(x)

ccg_filter.getAmplitudes()

ccg_filter.getFilterResponse(cutoff)

ccg_filter.getMonthlyMeans()

ccg_filter.getTrendCrossingDates()

Example of crea"ng the ccgfilter class

import ccg_filter

create the ccgfilt object
filt = ccg_filter.ccgFilter(xp, yp, shortterm, longterm, sampleinterval,

numpolyterms, numharmonics, timezero, gap, debug)

#
mm = filt.getMonthlyMeans()
amps = filt.getAmplitudes()
tcup, tcdown = filt.getTrendCrossingDates()

get x,y data for plotting
x0 = filt.xinterp
y1 = filt.getFunctionValue(x0)
y2 = filt.getPolyValue(x0)
y3 = filt.getSmoothValue(x0)
y4 = filt.getTrendValue(x0)

Seasonal Cycle
x and y are original data points
trend = filt.getTrendValue(x)
detrend = y - trend
harmonics = filt.getHarmonicValue(x0)
smooth_cycle = harmonics + filt.smooth - filt.trend

residuals from the function
resid_from_func = filt.resid

smoothed residuals
resid_smooth = filt.smooth

trend of residuals
resid_trend = filt.trend

residuals about the smoothed line
resid_from_smooth = filt.yp - filt.getSmoothValue(x)

equally spaced interpolated data with function removed
x1 = filt.xinterp
y9 = filt.yinterp

