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Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the

present day modelling of aerosol optical properties has been assessed using 2010 simulated data from 14 global aerosol models

participating in the Phase III Control experiment. Modelled column optical-depths (AOD, AOD< 1µm, AOD> 1µm) and

Ångström Exponents (AE) were compared both with ground based observations from AERONET (version 3) as well as space

based observations from ATSR-SU instruments. In addition, the total AODs were compared with MODIS (aqua and terra)5
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data and a satellite AOD data-set (MERGED-FMI) merged from 12 different instruments. Furthermore, for the first time,

the modelled surface scattering (under dry conditions) and absorption coefficients were evaluated against measurements from

in-situ GAW sites, which have highest site density in Europe and the US.

Prior to the assessment of the models, the individual satellites were evaluated against AERONET observations, suggesting

relative AOD biases of -5%, -6%, +9% and +18% for ATSR, MERGED-FMI, MODIS-aqua and MODIS-terra, respectively10

with consistently high correlations exceeding 0.8. In addition, biases of fine and coarse AOD and AE in ATSR were found to

be +2%, -16% and +14.7% respectively, at AERONET sites, with correlations of the order of 0.8. These (relative) biases in the

satellite data are mostly reflected when evaluating the models against these satellites, since the satellites show similar spatial

coverage.

15

The results of the AeroCom MEDIAN show that overall, the participating models underestimate all optical variables in-

vestigated. AOD is underestimated by -21%± 17% against AERONET. Compared to satellites, the model AOD biases are

ranging from -38% (MODIS-terra) to -17% (MERGED-FMI). Correlation coefficients of AOD are high against AERONET,

MERGED-FMI and ATSR-SU (0.8 - 0.9) and slightly lower when comparing the models with the two MODIS data-sets (0.6 -

0.8).20

Investigation of fine and coarse AODs from the MEDIAN model reveals biases of -10%± 20% and -41%± 29% against

AERONET and -13% and -24% against ATSR-SU, respectively. The differences in bias between AERONET and ATSR-SU

are in agreement with the established satellite biases. These results indicate that most of the AOD bias is due to missing coarse

particles or due to underestimations in the extinction efficiencies of coarse particles.

Evaluation of modelled column AEs shows an underestimation of -9%± 24% against AERONET and -21% against ATSR-25

SU. This suggests that overall, models tend to overestimate particle size. This may have important implications for lifetime and

hence, transport of the aerosol.

Considerably high underestimations are also found when comparing the models against the surface GAW observations,

showing MEDIAN biases of -44%± 22% and -32%± 34% for scattering and absorption, respectively. The fact that dry scat-

tering shows higher underestimation than the AOD comparison (at ambient RH) is in agreement with recent findings that30

suggest that models tend to overestimate scattering enhancement due to hygroscopic growth. The large diversity in the surface

absorption results suggests differences in the treatment of absorption optical properties of black carbon (BC), dust and organic

aerosol (OA). An investigation of the modelled diversity of surface absorption indicates, that regions associated with dust (e.g.

Sahara, Tibet), biomass burning (e.g. Amazonia, Central Australia) and biogenic emissions (e.g. Amazonia) are mostly ac-

counting for this disagreement between the models, while models tend to agree in regions associated with high anthropogenic35

BC emissions such as China or India.

An investigation of modelled emissions, burdens and lifetimes, MECs and optical depths for each species and model, reveals

considerably large diversity in most of these parameters. These are discussed in detail for each model individually and possible

reasons are provided, that may explain the results from the optical properties inter-comparison.
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1 Introduction

The global aerosol remains one of the largest uncertainties for the projection of future Earth’s climate, in particular because of

its impact on the radiation balance of the atmosphere (IPCC (2014)). Aerosol particles interact with radiation through scattering

and absorption, thus directly altering the atmosphere’s radiation budget (aerosol-radiation interactions, or ARI). Moreover, they

serve as cloud condensation nuclei (CCN) and can thus, among other things, influence further climate relevant components such45

as clouds and their optical properties (e.g. cloud droplet number concentrations, cloud optical depth) and lifetime as well as

cloud coverage and precipitation patterns (aerosol-cloud interactions, or ACI) (IPCC (2014)).

A challenging part of modelling the global aerosol is its comparatively high variability in space and time, as compared

to well-mixed greenhouse gases such as carbon dioxide and methane. The radiative impact aerosols exert depends on the

amount and the properties of the aerosol. Emissions and lifetime combined lead to different amounts of aerosol in transport50

models. The lifetime of aerosol particles in the atmosphere is of the order of one week and is, to first order, dependent on

their size. Particles in the accumulation mode (particle diameter between 0.3–1 µm) show the longest residence times due to

less effective atmospheric sink processes. The sources of aerosol are complicated since not all aerosol particles are directly

emitted. Instead, particles can also be formed in the atmosphere (secondary aerosol) which is dealt with in various degrees of

complexity in models (e.g. Tsigaridis et al. (2014)). Both natural and anthropogenic emissions are highly uncertain due to lack55

of measurements and information or documentation flow.

Natural aerosols constitute a large part of the atmospheric aerosol, being composed of sulphur and organic components, as

well as sea salt and dust. Emissions of sea salt and dust are strongly dependent on local meteorology and surface properties

and, thus, require sophisticated parameterisations in global models with comparatively coarse resolution. In models, these

emissions are usually computed based on simulated winds and constitute a major source of uncertainty. Marine DMS and60

volcanic emissions are responsible for approximately a third of the global anthropogenic sulphur budget. Both eruptive and

passively degassing volcanic sulphur emissions are highly uncertain, with estimates ranging between 1− 50Tg (e.g. Andres

and Kasgnoc (1998), Halmer et al. (2002), Textor et al. (2004), Carn et al. (2017)). In addition, atmospheric aerosol particles

undergo continuous alteration (e.g. growth, mixing) due to micro-physical processes that occur on lengths and timescales that

cannot be resolved by global models, such as nucleation or gas-to-particle conversion.65

The chemical and physical properties of aerosol particles determine how they interact with radiation. They are highly de-

pendent on the aerosol type and state of mixing. Aerosol optical properties such as the aerosol scattering and absorption

coefficients, the aerosol optical depth (AOD) and the Ångström exponent (AE) are closely linked with aerosol forcing esti-

mates as they determine how aerosols interact with incoming and outgoing long and shortwave radiation. A key parameter

that determines the efficiency of scattering and absorption of radiation is the complex refractive index (n+ ik), which de-70

pends on aerosol type (chemical composition) and mixing. It is dealt with in models in different ways (e.g. volume mixing,

Maxwell/Garnett, core shell, e.g. Klingmüller et al. (2014)). The absorptive properties of dust aerosol, for instance, are depen-
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dent on the mineralogy of the dust particles, resulting in some dust types being more absorptive than others (e.g. Lafon et al.

(2006)), which has direct implications for forcing estimates (e.g. Claquin et al. (1998)).

Scattering and absorption coefficients are derived from these extinction efficiencies and depend on particle size distribution75

and wavelength. In general, water uptake will enhance the light extinction efficiency. This is mostly relevant for scattering,

since absorptive aerosols such as dust and black carbon are generally considered to be hydrophobic (which can, to a minor

degree violated in aged aerosol due to mixing, e.g. Cappa et al. (2012)). For instance, between 0% and 40% relative humidity

(a range that is often referred to as "dry"), the light scattering can be significantly enhanced due to hygroscopic growth. This is

important when comparing models with in-situ observations, since the latter are often performed under low humidity but not80

at absolutely dry conditions. Some models tend to overestimate the enhancement factor at low RH (and high RH) and hence,

the amount of light scattering (Burgos et al., in prep.).

The AOD comprises the vertically integrated light extinction (absorption + scattering) due to an atmospheric column of

aerosol and is a function of wavelength. The AAOD is the corresponding equivalent for the absorptive power of an aerosol

column and tends to be small compared to AOD ( 5-10% of AOD). Both AOD (mostly scattering) and AAOD (absorption)85

are of particular relevance for aerosol forcing assessments (e.g. Bond et al. (2013)). Major absorbing species are black carbon

(BC), followed by dust (DU) and, to a certain degree, organic aerosols (OA) (e.g. Samset et al. (2018) and references therein).

Simulating the AOD (and AAOD) in a global model is hence, a challenging task as it requires many prerequisites to be

correct, not only the assumptions on optics (e.g. shape and refractive index, atmospheric radiative transfer), but also the emis-

sions, transport, ageing, sources and sinks of all aerosol species, which determine the aerosol composition in space and time.90

Therefore, it is useful to also investigate other optical (and related) parameters that can help to assess model performance.

The AE, for instance, describes the wavelength dependency of aerosol extinction and is related to the size of the aerosol (i.e.

larger particles exhibit less spectral dependence of scattering, resulting in smaller value of the AE). It can thus, provide a

qualitative assessment of modelled particle size (e.g. Schuster et al. (2006)). For instance an underestimation of AE suggests

an overestimate of the contribution of coarse particles. Like AE, fine and coarse mode AOD can also give insights into the par-95

ticle size domains, which can help establish differences between natural and anthropogenic aerosols (since the major natural

constituents, dust and sea salt, dominate the coarse mode AOD).

Kinne et al. (2006) provided a first analysis of modelled column aerosol optical properties of 20 aerosol models in the

initial AeroCom experiments. They found that, on a global scale, modelled aerosol optical depth (AOD) compares well with

observations (model biases of the order of NUM). However, they also found considerable diversity in the aerosol speciation100

among the models, particularly for absorption related aerosol species such as dust and carbonaceous aerosols. They concluded

that this adds uncertainty related to estimates of the direct forcing effect.

This study investigates modelled aerosol optical properties of the most recent models participating in the AeroCom 2019 con-

trol experiment (in the following denoted CTRL, https://wiki.met.no/aerocom/phase3-experiments) on a global scale. Making

use of the increasing amount of data which have become available during the past decade, we are able to extend the assess-105

ment of modelled optical properties beyond what was originally presented in Kinne et al. (2006). Here, we use observations of

ground and space based observations of the above introduced columnar variables of total, fine and coarse AOD and AE as well
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as, for the first time, surface in-situ measurements of scattering and absorption coefficients, primarily from surface observa-

tories contributing to Global Atmospheric Watch (GAW), obtained from the World Data Centre for Aerosols (GAW-WDCA)

archive.110

PARAGRAPH THAT INTRODUCES THE STRUCTURE OF THE PAPER

2 Methods

2.1 Observations and variables

Several ground and space-based observations have been utilised in order to establish a comprehensive evaluation at all scales.

Table 1 summarises all variables and observation networks that have been used. They will be introduced in more detail below.115

Fig. 1 shows yearly average mean values of the observed AERONET AODs and column extinction Angstrom exponents.

Dust dominated regions such as Northern Africa and Southwest Asia are clearly visible both in the coarse AOD and the AE,

but also in the total AOD, indicating its importance for the global AOD signal due to dust. The displayed satellite fields

of AOD (MERGED-FMI) and AE (ATSR-SU) are particularly useful in remote regions and over the oceans where ground

based measurements are less common, and, thus, add substantially to the global picture when assessing models. For example,120

satellites capture the nearly constant ocean AOD background of around 0.1 (mostly arising from sea salt) which is not really

measured by the land dominated, ground-based observation networks. The AE from ATSR-SU for instance, shows a latitudinal

southwards gradient in remote ocean regions, indicating coarse(r) particle sizes, likely attributed to cleaner and, thus, more

sea salt dominated regions. Transatlantic dust transport results in an increased particle size west of the Sahara (e.g. Kim et al.

(2014)) as is captured by ATSR-SU. Finally, as can be seen in the lowermost panel of Fig. 1, in-situ sites from GAW show125

highest density in Europe, followed by North America, while other regions are not represented well. This is important to keep

in mind for the assessment of the model evaluations against the different observation records.

The following subsections introduce briefly each of the observation data-sets used.

2.1.1 AERONET

The Aerosol Robotic Network (AERONET, Holben et al. (1998)) is a ground-based remote sensing network based on sun130

photometers and comprises a well established data-set that has been extensively tested and used over the last two decades.

In this paper, cloud screened and quality assured daily aggregates of AERONET AODs (total, fine, coarse) and AE from the

version 3 (level 2) Sun and SDA products (e.g. O’Neill et al. (2003), Giles et al. (2019)), have been used to assess the model

performance at AERONET locations. No further quality control measures have been applied due to the already high quality of

the data.135

For the analysis, the spectral AOD values were used to derive an AOD at 550 nm using the provided AE. Data from the

DRAGON campaigns (Holben et al. (2018)) was excluded and no further site selection has been performed. However, a
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sensitivity study was performed to investigate potential spatial representativity issues associated with some AERONET sites

but the impact was found to be of minor relevance for this study (for details see Sect. 3.4 and Fig. A5).

2.1.2 Surface in-situ data140

Surface in-situ measurements of the aerosol light scattering and absorption coefficients, were accessed through the GAW-

WDCA database EBAS (http://ebas.nilu.no/). The EBAS database also includes various observations of atmospheric chemical

composition and physical parameters, although those were not used here. For both scattering and absorption variables, only

level 2 data from the EBAS database were used (i.e., quality controlled, hourly averaged, reported at STP). All data in EBAS

have version control, and a detailed description of the quality assurance and quality control procedures for GAW aerosol in-145

situ data are available in Laj et al. (2020). Additionally, for this study data was only considered if it was associated with the

EBAS categories aerosol or pm10. The aerosol category indicates the aerosol was sampled using a whole air inlet, while pm10

indicates the aerosol was sampled after a 10µm aerodynamic diameter size cut. It was assumed whole air and pm10 would

provide the better comparison with model simulations than measurements with smaller cut size (e.g., pm2.5 or pm1). Invalid

measurements were removed based on values in the flag columns provided in the data files. Furthermore, outliers were identi-150

fied and removed using value ranges of {−10,1000}Mm−1 and {−1,100}Mm−1 for scattering and absorption coefficients,

respectively. The outliers were removed in the original 1h time resolution before averaging to monthly for comparison with

the monthly model data. For most of the absorption data, the measurements are performed at wavelengths other than 550 nm.

These were converted to 550 nm assuming an absorption Angstrom exponent (AAE) of 1 (e.g. Bond and Bergstrom (2006)).

For the scattering coefficients, only measurements at RH≤40% were considered. For the model evaluation, the 2010 monthly155

model data was converted to STP using the following formula:

XSTP =XAMB×
(
pSTP

pAMB

)
·
(
TAMB

TSTP

)
(1)

where pSTP and TSTP are standard IUPAC standard pressure and temperature, and pAMB and TAMB are air pressure and

temperature at the corresponding site location. The correction was performed on a monthly basis using the station altitude to

estimate the pressure and monthly near surface (2m) temperature from ERA5 (CITE).160

A few urban sites were removed from consideration for the model analysis, as these sites are likely not representative on

spatial scales of a typical model grid. These sites are:

Scat. coeff.: Granada; Phoenix; National Capitol - Central, Washington D.C

Abs. coeff.: Granada; Leipzig Mitte; Ústí n.L.-mesto

165

The biases of each model for individual in-situ sites are shown in Appendix Figs. A1 and A2 for scattering and absorption,

respectively.
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2.1.3 MODIS data

Daily gridded level 3 AOD data data from the Moderate Resolution Imaging Spectroradiometer (MODIS), has been used from

both satellite platforms (Terra and Aqua) for evaluation of the models. The merged land and ocean global product (named170

Aerosol_Optical_Depth_Land_Ocean_Mean in the product files) of the recent collection 6.1 was used. This is an updated and

improved version of collection 6 (e.g. Levy et al. (2013), Sayer et al. (2014). For changes between both datasets, see Hubanks

(2017)).

2.1.4 (A)ATSR SU v4.3 data

The ATSR v4.3 SU dataset provides gridded AOD and associated parameters from the ATSR instrument series, developed by175

Swansea University (SU) under the ESA Aerosol Climate Change Initiative. The ATSR-2 instrument was hosted on the ERS-2

satellite, and provides a record from 1995-2003, with its successor instrument AATSR on ENVISAT covering the period 2002-

2012. The instrument’s conical scan provides two near simultaneous views of the surface, at solar reflective wavelengths from

555nm to 1.6 um.

Over land, the algorithm uses the dual-view capability of the instrument to allow estimation without a priori assumptions on180

surface spectral reflectance (North (2002), Bevan et al. (2012)). Over ocean, the algorithm uses a simple model of ocean surface

reflectance including wind-speed and pigment dependency at both nadir and along-track view angles. The retrieval finds an

optimal estimate of the AOD at 550 nm, and aerosol model. Further aerosol properties including AE and AAOD (not used

in this study) are determined from this model. The aerosol model is found by optimal estimation of the fine and coarse mode

fractions, where local composition of fine and coarse mode is given by a climatology (Kinne et al. (2013)). Aerosol is retrieved185

over all snow-free and cloud-free surfaces. The most recent version SU ATSR V4.3 (North and Heckel (2017)) advances on

previous versions by improved surface modelling and shows reduced positive bias over bright surfaces. The output at L2 is total

column AOD at 550 nm, at 10 km resolution, and associated aerosol properties. Retrieval uncertainty and comparison with sun

photometer observations show highest accuracy retrieval over ocean and darker surfaces, with higher uncertainty over bright

desert surfaces, and land surface at southern latitudes (Popp et al. (2016)). The level 3 output is re-gridded to daily and monthly190

1 degree resolution, intended for climate model comparison.

In this study, AE as well as total, fine and coarse AODs are used. Results (normalised biases and correlation coefficients)

from an inter-comparison with AERONET measurements is shown in Fig. 2 (discussed in more detail in Sect. 2.4).

2.1.5 Merged satellite AOD data

The MERGED-FMI dataset (1995-2017), developed by the Finnish Meteorological Institute, includes gridded L3 monthly195

AOD products merged from 12 available satellite products (Sogacheva et al. (2019)). The merging method is based on the

AOD evaluation results against AERONET for the individual satellite AOD products. Those results were utilised to infer a

regional ranking which was then used to calculate a weighted AOD mean. Because it is combined from the individual products

of different spatial and temporal resolution, the AOD merged product is characterised by the best possible coverage, compared
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with other individual satellite products. The AOD merged product is at least as capable of representing monthly means as the200

individual products (Sogacheva et al. (2019)). Standard pixel-level uncertainties for the merged AOD product were estimated

as the root mean squared sum of the deviations between that product and other eight merged AOD products calculated with

different merging approaches applied for different aerosol types (Sogacheva et al. (2019)).

2.2 Models

This study uses output from 13 models that are participating in the AeroCom 2019 control experiment (https://wiki.met.no/205

aerocom/phase3-experiments, denoted in the following as CTRL). For this experiment, modellers were asked to submit simu-

lations of at least the years 2010 and 1850, with 2010 meteorology and prescribed (observed) sea-surface temperature and sea

ice concentrations. Modellers were asked to use CMIP6 emission inventories, when possible. Detailed information about the

models and their treatment of aerosol optics are provided in the supplementary material Tab. LINK TO OPTICS QUESTION-

NAIRE (PLEASE CHECK AND FILL IF YOU HAVE NOT DONE SO)currently available here: https://docs.google.com/210

spreadsheets/d/1VN_mG2r3bqQuzDVUajBwqohlbp_fHRsNe9ThfuHnHUs/edit#gid=786063029). An overview of all models

is provided in table 2. More details about each of the models is provided in the corresponding discussion section in Sect. ??.

2.2.1 AeroCom ensemble mean and median

The AeroCom ensemble mean and median were computed in monthly resolution, considering only those models where all

required optical properties were available before 19.12.2019 (cf. Fig. 10). These models are also indicated in Tab. A1). Here215

we use output from the median model (denoted MEDIAN below) if not explicitly indicated differently.

For each of the variable fields, each of the included models was first re-gridded to a latitude / longitude resolution of 2◦×3◦

and to monthly resolution (for the models that provided higher temporal resolution). From these harmonised models, both the

arithmetic mean and the median model were computed as well as diversity fields for each variable. In case of the mean model,

the diversity was computed as defined in Textor et al. (2006) (cf. Eq. 1 therein). For the median model the interquartile range220

(IQR) was used.

2.3 Data analysis

The analysis of the data was performed using the pyaerocom software (cf. Sect. C). The ground and space based observations

are colocated with the model simulations by matching with the closest model grid-point in the provided model resolution.

In the case of ground-based observations (AERONET and in-situ), the model grid point closest to each measurement station225

is used. For the satellite observations, both the model data and the (gridded) satellite product are re-gridded to a resolution

of 5◦× 5◦ and the closest model grid point to each satellite pixel is used. The choice of this rather coarse resolution is a

compromise mostly serving the purpose of increasing the temporal representativity (i.e. more data points per grid cell) in order

to meet the time resampling constraints (cf. Sect. ??) and also, to reduce the processing time and required data storage for

the web visualisation of the results (https://aerocom-evaluation.met.no/overall.php?project=aerocom&exp=PIII-optics2019-230
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P). A sensitivity analysis was performed by comparing the monthly average statistics discussed below with statistics based on

model colocation in daily resolution and in the original horizontal satellite resolution. The differences in bias and correlation

coefficient were found to be small (< NUM% in NMB and < NUM in correlation) compared to the diversity found among the

models (cf. Tab. ??).

Since many model fields were only available in monthly resolution, the colocation of the data with the observations (and the235

computation of the statistical parameters used to compare the models) was performed in monthly resolution. Any model data

provided in higher temporal resolution was resampled to monthly using the mean value, prior to the analysis. For the higher

resolution observations (cf. 1), the computation of monthly means was done using a hierarchical resampling scheme, requiring

at least 25% coverage. Practically this means that the daily AERONET data was resampled to monthly, requiring at least 7

daily values in each months. For the hourly in-situ data, first a daily mean was computed (requiring at least 6 valid hourly240

values) and from these daily means, monthly means were computed requiring at least 7 daily values. Data that did not match

these coverage constraints were invalidated.

2.4 Evaluation of satellite products at AERONET stations

All satellite data-sets were evaluated against the ground based AERONET data in order to establish an estimate of the relative

differences (biases, correlation coefficients) between the different data-sets when comparing with the models. The evaluation245

of the gridded satellite level 3 products was performed in the same manner as the evaluation of the models, as described in the

previous section 2.3.

Figure 2 shows the results of this analysis. In terms of AOD, a high correlation is found for all satellite products with

AERONET observations (R> 0.80). In terms of bias (normalized mean biasNMB), AATSR shows an underestimation of

-4.5% while MODIS Aqua and Terra yield slightly overestimated biases of +9.3% and +18.1% respectively.250

We remark that this analysis is biased by the uneven distribution of AERONET sites (highest density in Europe and North

America, cf. Fig. 1) and that problematic regions in the satellite retrievals (e.g. Sahara) may not be well represented in this

comparison.

The SU AATSR retrieval includes a conservative cloud mask utilising thermal channels in additional to optical, and avoids

retrieval near cloud edges. Evaluation under aerosol CCI of six datasets showed AATSR and SeaWifs had lowest bias (with255

SeaWifs) with respect to ocean and coastal sun photometers (Popp et al. (2016)).

3 Results

In this section the results from the model evaluation are presented, starting with a presentation of the results from the ensemble

model and the distributions of model diversity, followed by a brief discussion of annual averaged emissions, burdens, lifetimes,

MECs and ODs for each modelled aerosol species. Finally, the results of the optical property evaluation are presented in ...260
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3.1 Annual global distributions of optical properties and their diversity

Figure 3 shows maps of yearly average values for each aerosol variable (left) including the mean values of each corresponding

ground based network at the individual locations. The right panel shows corresponding diversity maps computed following

the definition of diversity in Textor et al. (2006) (mean normalised standard deviation of results from individual models). Also

provided are model mean values (global and at station locations) as well as the mean value of the observations (at stations).265

The overall highest model diversity is found for the simulated surface in situ aerosol absorption coefficients and is particu-

larly prominent in Amazonia, a region of substantial regular biomass burning events (peaking in early September in 2010 ) and

also new particle formation (NPF) events due to biogenic emissions. The diversity may thus be a combination of the different

treatments of SOA formation (and absorptive properties of OA) as well as differences in NUM. Diversity is also high in the

South Pacific / Antarctica. Interestingly, models tend to agree in major source regions such as China and India (low diversity270

in surf. absorption).

Interestingly, coarse mode AOD shows relatively large global diversity (62 %) which seems to mostly arise from differ-

ences in elevated or mountainous desert regions such as the Southern Peruvian and Northern Chilean Andes, Tibet, but also

Antarctica. These regions are however, associated with generally low AODs.

3.2 Modelled emissions, burdens, lifetimes and MECs275

Lifetimes were calculated for each species by dividing global averages of the correspond load fields with the total depos

Figsures 5, 6, 7 and 8 show global annual average of emissions, loads, lifetimes and mass to extinction coefficients, for each

aerosol species and for each model, respectively. Note that the colors in the heatmaps are applied row-wise in order to highlight

differences between the models. Also included in each plot are mean, median and diversity for each species. The diversity is

computed as the average width of the distribution inferred from 1st and 3d quantiles. Figure 9 shows corresponding averages280

for the individual optical depths of each species. Also shown are values of AOD due to water, reported clear sky (CS) and / or

all sky AOD (lowermost rows) as well as the summed AOD of all non-water aerosol species (BC, DU, OA, (NO3) SO4 and

SS) in the third last row. Models

3.3 Results from optical properties evaluation

Figures 10 and 11 show performance matrices of the normalised mean bias (NMB) as well and the Pearson correlation co-285

efficient, respectively for each model, variable and observation dataset used. The ensemble model is plotted in the rightmost

column. Overall, it appears from Fig. 10 that models moderately underestimate the selected optical properties, both when eval-

uated against ground-based remote sensing and in situ observations but also against the satellite datasets. The latter provide the

highest spatial coverage (cf. Fig. 1) and are particularly sensitive to the oceans as they contribute the largest surface fraction.

However, it is important to note that the temporal sampling of the satellites is limited to their local overpass time and cloud-290

free conditions, which may introduce sampling biases of the order of XX (Check Nick’s paper(s), as compared with the fully

sampled (24h) monthly model fields. To a certain degree, these differences are indicated in the evaluation of the satellite AODs
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against AERONET (cf. Sect. 2.4, Fig. 2) and they propagate into the statistics established in the evaluation of the individual

models. For instance, the ensemble model shows biases of −8.1%, −23.1%, −8%

3.4 Representativity of the results295

As described in Sect. 2.3, monthly averages of the models and observations (computed from higher temporal resolution ob-

servation data, requiring at least 25% sampling coverage as described in Sect. 2.3) were colocated in space (using nearest

neighbour colocation) and time. This results in a point cloud of monthly mean values which is used to compute the statistical

parameters (in this study: normalised biases and correlation coefficients). These statistical parameters are then used to assess

the performance of individual models and the ensemble mean, discussed in the following sections (cf. Figs. 10 and 11). The300

comparison of the (often) temporally incomplete observational records, that are sampled at distinct locations, can introduce

considerable representation errors both on spatial and on temporal scales (see e.g. Schutgens et al. (2016), Schutgens et al.

(2017), Wang et al. (2018), Sayer and Knobelspiesse (2019) and references therein). These errors can affect established biases

between model and observation but also other performance measures such as correlation coefficients.

Therefore, several sensitivity studies have been performed in order to investigate how these spatio-temporal representation305

errors affect the global monthly statistical parameters that are used in this study. Temporal representation uncertainties were

investigated 1. for in-situ absorption coefficients using hourly TM5 data from the AeroCom INSITU experiment (CITE) eval-

uated against GAW measurements (Fig. A4) and 2. for columnar AOD using 3-hourly data from ECMWF-IFS, evaluated

against AERONET AODs (Fig. A3). In addition, spatial uncertainty errors were investigated for the ensemble mean AOD

using monthly means from all AERONET sites available in 2010 and a selection of AERONET sites with an absolute spatial310

representation error smaller than 10%, as established by Wang et al. (2018) (Fig. A5). The results are summarised in Tab. ??

and show that the overall differences are of the order of 10% and 0.2 for NMB and correlation, respectively. The monthly

resolution colocation improved performance of the in-situ absorption inter-comparison in nearly all statistical parameters, rel-

ative to hourly colocation. For example the correlation improved by 0.2 (cf. Fig. A4). However, these differences arising from

spatio-temporal representation errors are small compared to the diversity in the results among the different models participating315

in this study (shown in Figs. 10 and 11), which are discussed in the following sections.

Based on these results and due to the fact that some model data was only available in monthly resolution, it was decided

that all model and observation comparisons in this study would be performed in monthly resolution. This will make the inter-

model results more consistent and hence, more suitable for inter-comparison as they carry similar representation errors (which

are introduced by the incompletely sampled observational records), with the spatial representation errors for each model being320

affected by its horizontal resolution (cf. 2, but to a minor degree. The small differences in bias and correlation that we find in our

sensitivity tests (cf. Figs. A3, A4, A5) are important results that indicate that the magnitude of spatio-temporal representation

uncertainties in statistical parameters derived from annual averages over whole networks (or satellite records) is of the order of

±10%. However, we want to stress that these uncertainties are not to be misinterpreted with corresponding uncertainties over

sub-domains or at specific locations and times, which can be much higher as shown in the various literature referred to above.325
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See also Fig. 2 and Tab. A2 for an assessment of potential biases and uncertainties related to the satellite data analysis, which

was performed based on monthly means and based on re-gridded satellite and model data at a resolution of 5◦× 5◦ (for the

reasons stated above).

4 Discussion

4.1 CAM5-ATRAS330

The emissions and burden of OA (primary + secondary formation) are greater than the model ensemble by 90% and 50%,

respectively (Figs. 5, 6), because the ATRAS model considers OA formation from semi-volatile and intermediate volatility

organic compounds in addition to anthropogenic and biogenic VOCs based on the volatility basis set approach (Matsui et al.,

2014a, 2014b; Matsui, 2017). NO3 burden is lower than the model ensemble and it is consistent with Matsui and Mahowald

(2017). The burdens of BC, SO4, SS, and DU and the lifetimes of all aerosol species in CAM5-ATRAS are similar to those in335

the model ensemble (Figures 5-7). BC MEC is greater than the model ensemble by 40% (Figure 8) likely because the ATRAS

model calculates the enhancement of absorption by BC aging processes explicitly by resolving BC mixing state with 8 bins

(pure BC, BC-free, and 6 internally-mixed BC bins). The value of BC MEC in this study (9.5 m2 g-1) is close to that in Matsui

et al. (2018) ( 10 m2 g-1). AOD biases are also similar to the model ensemble (Fig 10). The underestimation of AOD compared

with MODIS and AERONET AODs is consistent with Matsui (2017).340

4.2 EC-Earth3-AerChem and TM5

Two configurations of the atmospheric composition model TM5 (Tracer Model 5) are included in this study (van Noije et al.

(2014)): a standalone version of TM5, and an atmosphere-only version of the CMIP6 climate model EC-Earth3-AerChem (van

Noije (2019)). The standalone model is driven by meteorological and surface fields from the ERA-Interim reanalysis (Dee et al.

(2011)), whereas in the climate model there is online interaction between TM5 and the atmospheric general circulation model,345

which is based on model cycle 36r4 of ECMWF’s Integrated Forecasting System (IFS). The set of meteorological and surface

variables that drive TM5 are the same in both configurations. In the EC-Earth simulations analyzed in this study, sea surface

temperatures and sea ice concentrations were prescribed using AMIP forcing fields provided for CMIP6; in addition, vorticity,

divergence and surface pressure fields were nudged to ERA-Interim, using a Newtonian relaxation scheme with a time constant

of 8h and 15min in the whole atmosphere.350

TM5 uses the aerosol scheme M7 (Vignati et al. (2004)), which represents sulfate, black carbon, organic aerosols, sea salt and

mineral dust with seven lognormal size distributions or modes. Aerosol components are assumed to be internally mixed inside

the modes. The formation of secondary organic aerosols in the atmosphere is described following Bergman et al., in prep).

Ammonium-nitrate and methane sulfonic acid (MSA) are described by their total mass, and assumed to be present only in

the soluble accumulation mode (see van Noije et al. (2014) for more details). TM5 has an interactive tropospheric chemistry355

scheme (Williams et al. (2017)), which also describes the aqueous-phase oxidation of dissolved sulfur dioxide in clouds.
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When calculating the dust source, TM5 excludes the particles with dry diameter larger than 16 µm. This may explain why the

mean emitted dust mass is smaller than in other models. Only if cut-off size applied in the other models are larger. What are

they? The cut-off also affects the dust lifetime and MEC. Differences in 10 m wind speeds generally reduce the dust emissions

from the main source regions in EC-Earth compared to TM5 (Fig. 5), leading to proportionally lower dust burdens. Sea-salt360

emissions, on the other hand, which depend on 10 m wind speeds and sea surface temperatures, are very similar in the two

models. The mean OA lifetime in EC-Earth is 9% longer than in TM5, and in both models are longer than in the other models.

This may be in part due to the use of interactive chemistry in TM5 (and EC-Earth), which may lead to a depletion of oxidants

over regions with high biogenic VOC emissions, thereby increasing their lifetime (Sporre et al., in preparation). How does this

lead to longer SOA lifetime? The aerosol optical properties in TM5 are calculated based on Mie theory, where the mixing rules365

of Bruggeman and Maxwell-Garnett are applied as approximations of the refractive index of the internally mixed modes. The

contributions of the individual aerosol components are estimated by distributing the resulting total ambient extinction of each

mode over the individual dry aerosol components, using volume weighting. In this way the extinction due to the presence of

water is associated with the other aerosol components. This will enhance the MEC values for TM5 and EC-Earth compared

to models in which the water contribution is excluded in the component MECs, such as ECHAM-HAM and ECHAM-SALSA370

(cf. Fig. ??). Some general remarks highlighting the models’ performance compared to the observations can be added.

4.3 ECHAM-HAM

The global aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-HAM in the following) is part of the fully coupled aerosol

chemistry climate model ECHAM–HAMMOZ (Tegen et al. (2019), Schultz et al. (2018)). Aerosol microphysical processes

in ECHAM-HAM are described with the modal M7 aerosol model (Vignati et al. (2004)) in contrast to ECHAM-SALSA375

which employs the sectional aerosol scheme SALSA (Kokkola et al. (2018)). The aerosol representation in ECHAM-HAM

has been evaluated in Tegen et al. (2019) but using different aerosol emissions (different inventories for anthropogenic and

biomass burning emissions as well as a different sea salt emission parameterisation). For the CTRL experiment the sea salt

emission parameterisation from Guelle et al. (2001) was chosen, firstly because the one proposed by Long et al. (2011) and

Sofiev et al. (2011) resulted in an underestimation of the sea salt concentrations (Tegen et al. (2019)) and secondly, to be380

consistent with the CTRL setup of ECHAM-SALSA (cf. Sect. 4.4. However, this comes at the price of larger sea salt particles

(on average), resulting in a slightly decreased correlation against AERONET compared to Tegen et al. (2019). The latter,

however, may to a certain degree also be affected by different representation errors as Tegen et al. (2019) use 6-hourly data to

colocate in time, while this study relies on monthly means (cf. Sect. 3.4, particularly Tab. 3). AOD over land is lower than in

AERONET or MODIS observations (Fig. 10) which may be due to several reasons, for instance because NO3 is missing, too385

low emissions of OA or a misrepresentation of SOA (the OA burden in ECHAM-HAM is lower than in most other models,

see Fig. 6 and Tegen et al. (2019)). The fine mode AOD is overestimated over ocean and dusty regions which is indicated by

the stronger overestimation compared to AATSR (dominated by ocean) than to AERONET (more representative of land). The

coarse mode AOD on the other hand is underestimated over land (too low compared to AERONET, Fig. 10) but overestimated

over subtropical ocean, leading to almost no bias compared to AATSR. Except for regions dominated by dust aerosol AE390
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is biased low. The underestimation of AE in dust dominated regions combined with the overestimation of fine mode AOD

and the longer lifetime of dust particles compared to other models (Fig. 7) indicates a too small size of dust particles. The

underestimation of AE compared to AERONET and AATSR is surprising since fine mode AOD is overestimated (Fig. 10), the

aerosol size distribution of ECHAM-HAM agrees reasonably well with observations (Tegen et al., 2019) and Tegen et al. (2019)

find a positive bias of AE compared to AERONET. This could be related to the different sea salt emission parameterization395

applied in CTRL or temporal sampling errors (Schutgens et al., 2016; Sayer and Knobelspiesse, 2019).

Comments:

– Region of strong anti-correlation in eastern Mediterranean in fine AOD and AOD

– Species AODs are reported as dry (!), also in ECHAM-SALSA: impacts MEC (!)

– Generally relatively low correlation against most variables compared to other models (cf. Fig. 11400

– AOD underestimated by about 30% (Tegen et al. (2019), Fig. 5 find absolute biases of -0.03 to -0.05, our results corre-

spond to roughly -0.06 in AOD units)

– ...

4.4 ECHAM-SALSA

SALSA is the sectional aerosol microphysics module within the ECHAM-HAMMOZ aerosol-chemistry-climate model (Kokkola405

et al., 2018) alongside the modal aerosol module M7 (Tegen et al., 2019). The implementation of SALSA to ECHAM-

HAMMOZ and its evaluation against satellite retrievals, ground based remote sensing retrievals, and in situ observations

has been described by Kokkola et al. (2018). One change in these model simulations compared to those in Kokkola et al.

(2018) are, in addition to using anthropogenic emissions required for AEROCOM III simulations, is using sea salt emission

parameterization of Guelle et al. (2001) for the reasons described in the previous section 4.3.410

As the atmospheric model is the same in ECHAM-HAM and ECHAM-SALSA, results between the two model configu-

rations are quite similar. An overall view of the performance of SALSA is that the values fall within the spectrum of model

ensemble values except for the burdens of BC and SU for which SALSA predicts highest values of all models (Fig. 6). The BC

lifetime is highest among all models (9.6 days, Fig. 7) which explains the high burden. On the other hand, reasons for the high

SO4 burden are not obvious and, since corresponding emissions and lifetimes are comparable with the other models. It may415

hence be related to the oxidation efficiency of sulphate from its precursors (DMS, SO2).

When comparing the total simulated (clear sky) AOD of SALSA to observation, values are higher than those from AATSR,

MERGED-FMI, and ECMWF reanalysis and lower than those from Aeronet and MODIS (Aqua and Terra). Over most of the

land area SALSA underestimates AOD while overestimating AOD over the oceans. The exceptions for the underestimation are

Australia and North Africa where SALSA exhibit high values for the total AOD. This is likely due to the contribution of dust420

to the AOD and is also reflected in the coarse mode AOD. The coarse mode AOD of SALSA is significantly overestimated

with normalized bias of 24%. Regions with high dust loads exhibit overestimation of coarse mode AOD. These features were
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also seen in the study by Kokkola et al. (2018). In addition to dusty regions, coarse mode AOD has a large positive bias over

the oceans. We expect this to be due to high simulated relative humidity in ECHAM over the oceans or too high hygroscopicity

for SS aerosol. It is noteworthy that although coarse mode AOD is overestimated over regions where AOD is dominated by sea425

salt and dust, their emissions are not higher in SALSA and it is likely that the simulated size distribution of SALSA is such that

SS and DU particles influence radiation effectively. For Aeronet sites, similar overestimation of coarse mode AOD is not seen

since Aeronet sites cover the land area. On the other hand, over regions affected by DU, coarse mode AOD is overestimated in

SALSA. For example, Aeronet sites north of Africa exhibit simulated values higher than those measured.

– From Fig. 9 it seems that both ECHAM models report dry species AODs (i.e. the sum of od550h2o and all the other430

species gives the total). This should be mentioned as all the other models report them at ambient conditions. This explains

why MECs are lowest for the 2 ECHAM models.

– Can we explain, why surface scattering and absorption are underestimated by about -68% and -40%?

References: Bergman et al. (2012), Kokkola et al. (2018)

4.5 ECMWF-IFS435

As part of the Copernicus Atmosphere Monitoring Service (CAMS; https://atmosphere.copernicus.eu/), ECMWF runs a ver-

sion of IFS model that includes prognostic aerosol and tropospheric chemistry schemes to produce global forecasts of atmo-

spheric composition. The underlying meteorological model is essentially identical to that used for operational medium-range

weather forecasting and documented at https://www.ecmwf.int/en/forecasts/documentation-and-support, but at a lower resolu-

tion of 40 km to offset the cost of the extra schemes. The results presented here are from a “cycling forecast” configuration, i.e.440

a forecast with free-running aerosols and chemical species (no assimilation of atmospheric composition), with meteorology

reinitialised at 00 UTC each day from operational ECMWF analyses.

The aerosol component is described in Rémy et al. (2019) and based on the earlier work of Morcrette et al. (2009). This

is an externally-mixed hybrid bin/bulk scheme, consisting of three size bins each for desert dust (up to 20µm dry radius) and

sea-salt (up to 20µm radius at 80% relative humidity), and bulk tracers for organic matter, black carbon and sulfate aerosol.445

For organic matter and black carbon, there are separate hydrophobic and hydrophilic tracers, with a fixed ageing timescale for

conversion of the former to the latter. There is also an SO2 precursor tracer driving the sulfate production via a latitude- and

temperature-dependent conversion timescale. There is no separate DMS tracer, and no primary sulfate aerosol emission – all

sulfate and precursor emissions are treated as SO2. The tropospheric chemistry scheme is described in Flemming et al. (2015),

but in the version described here this is not directly coupled to the aerosol scheme.450

Compared to the other AP3 models, the total sea-salt emissions and burden are very large, as can be see in Figures 5 and 6.

Emissions are three times larger than the ensemble mean, but due to a short lifetime (see Figure 7) the burden is only three

times larger. However, the sea-salt contribution to AOD remains similar to other models because the large size distribution

reduces the extinction per unit mass. These are known issues with the emission scheme in this version of the model (based on

Grythe et al., (2014; https://doi.org/10.5194/acp-16-12081-2016), and the subject of ongoing development.455
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The model also has one of the smallest sulfate burdens, which appears to be the result of both relatively low total sulfur

emissions and a short lifetime. Organic aerosol emissions are higher than most models, although the burden and lifetime are

similar to other models. This is likely due to the fact that there is no secondary organic precursor scheme, and secondary

organic production is included instead as if it were a primary emission.

Although correlation coefficients for AOD (Figure 11) for this model are amongst the higher ones, there is a significant460

low bias against all the AOD datasets (satellite and AERONET). This is likely related to the relatively short lifetimes of many

species compared to other models, which can be seen in Figure 7. There is also a low bias against both AERONET and ATSR

AE, suggesting that particles are on average too large; this may well be due at least in part to the unusually high sea-salt burden

in the model noted above.

References:465

4.6 EMEP MSC-W

The EMEP MSCW model is a chemical transport model, designed for policy related applications to combat acid deposition,

eutrophication and health adverse air pollution (Simpson et al. (2012)). It calculates the mass concentrations of all main

anthropogenic and natural aerosols, contributing to the health related indicators PM2.5 and PM10. The results presented in the

paper were obtained in a model run at 0.5× 0.5◦ grid, driven by 3-hourly ECMWF-IFS meteorology and using ECLIPSE6b470

emissions (ECLIPSE6a for shipping), both for the year of 2010. The model includes aerosols with diameters up to 10 µg

and calculates the mass concentrations aerosols in fine and coarse mode. Then, the extinction and absorption coefficients

are calculated for the individual aerosol components using mass extinction/absorption coefficients and accounting for aerosol

hygroscopic growth (aerosol effective radii, growth factors and specific extinction efficiencies are tabulated) (Schulz et al.

(2012)).475

The calculated all-sky AOD is -10% lower compared to globally averaged annual AOD from AERONET (correlation 0.76).

Comparison with satellite AOD shows suggests underestimations between 34%-51%, and the relative differences here mostly

reproduce the biases observed between the satellites (Fig. 2). These results indicate that EMEP underestimates AOD more over

the oceans than over land. Evaluation results against those observations for different world regions are inconclusive in terms

of model bias (inferred from web visualisation of the results, cf. Sect. ??). Furthermore, fine AOD is overestimated by 20%480

compared with AERONET data and slightly (by only 11%) underestimated compared to ATSR-SU, whereas coarse AOD is

considerably underestimated (by 68 and 70% respectively). Consistently with that, the AE is somewhat overestimated (by 36%

and 44%), indicating a disproportion between the contributions to AOD from the fine and coarse aerosols and suggesting that

either the EMEP model calculates too little of coarse particles or the applied mass extinction efficiencies are too low. One of

the possible reasons for that is that fine sea salt and dust particles in the EMEP model are assumed to have diameters smaller485

than 2.5 µg, so that the extinction due to sea salt and dust aerosols with diameters between 1 and 2.5 µg contributes actually to

the AOD<1 µg.

Regarding aerosol specific AODs (Fig. 9), the EMEP model calculates somewhat larger than the median AOD due to NO3

and OA, which is in agreement with its relatively large loads for those components (the model calculates both fine ammonium
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nitrate and coarse NO3 on sea salt and dust; and EMEP OA include primary OA and anthropogenic and biogenic secondary490

OA). For the other aerosols, EMEP calculated aerosol loads and AODs are somewhat smaller than the mean/median values.

The resulting MECs are in general agreement with the Aerocom median MECs, with the exception of the MEC for SO4, which

is one of the largest (probably due to too effective hygroscopic growth), which is compensated by the rather low SO4 burden

(SOx emissions from ECLIPSE6b used by the EMEP model are smaller than from CMIP6).

The small discrepancy between Total AOD and the sum of the aerosol specific AODs is because the modelled BC AOD is495

only due to anthropogenic emissions (does not include forest fires) and DU AOD is only due to windblown dust (while some

fugitive anthropogenic dust is also included in the Total AOD).

Absorption coefficient is diagnosed from BC and dust mass concentrations, using Mass Absorption Coefficients. Overall,

EMEP Absorption coefficient for 2010 is 40% lower than ebas climatological observations, and the correlation is 0.66, which

is a fair result given the crude simulation approach. The scattering coefficient is underestimated by 47% on the average by500

the model (Pearson R = 0.74). It should be noted that the absorption and scattering coefficients from the EMEP model are

representative of dry aerosols.

Small text about burdens/lifetimes here...needs to be uncommented

References:505

4.7 GEOS

The version of GEOS-5 Earth System Model with a GOCART aerosol module used for this study is Icarus-3_3_p2. The

simulations run at a spatial resolution of 1.0° longitude x 1.0° latitude and 72 vertical levels from surface up to 0.01hPa ( 85km)

with the “replay” mode, i.e., simulations driven by the reanalysis meteorological fields from the Modern-Era Retrospective

Analysis for Research and Applications version 2 (MERRA2) to assure that the weather and climate patterns are accurately510

represented for the simulated time. The GOCART module includes major aerosol types of black carbon (BC), organic carbon

(OC), brown carbon (BRC), sulphate, nitrate, ammonium, dust, and sea salt (Chin et al., 2002, Colarco et al., 2010, Bian et al.,

2019). The aerosol emissions used in this study follow the instruction of AeroCom Phase III History experiment. The major

updates of this GOCART version include newly implemented nitrate, ammonium, anthropogenic SOA, and biomass burning

SOA, as well as separate treatment of optical properties for brown carbon (from biomass burning source) and organic carbon515

(from all other sources) (Bian et al., 2017).

References:

Bian, H., Froyd, K., Murphy, D. M., Dibb, J., Darmenov, A., Chin, M., Colarco, P. R., da Silva, A., Kucsera, T. L., Schill,

G., Yu, H., Bui, P., Dollner, M., Weinzierl, B., and Smirnov, A.: Observationally constrained analysis of sea salt aerosol in the

marine atmosphere, Atmos. Chem. Phys., 19, 10773–10785, https://doi.org/10.5194/acp-19-10773-2019, 2019.520

Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera,

T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: In-
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PLEASE INSERT A SHORT PARAGRAPH THAT EXPLAINS / COMBINES THE RESULTS FROM YOUR MODEL

SHOWN IN FIGS 10, 11 AND 5, 6, 7, 8. You may, e.g. see Sect. 4.11 as a guideline example. PLEASE ALSO COMMENT

ON DUST SOURCE CUT OFF SIZE IF APPLICABLE (cf. 4.2). AND PLEASE DISCUSS BIAS IN Angstrom Exponent

(AE), especially if AE is underestimated (i.e. suggesting too large particles) but comparisons of od550gt1aer (coarse AOD)

and od550lt1aer (fine AOD) are suggesting differently (e.g. fine mode overestimated, coarse mode underestimated).535

4.8 GFDL-AM4

The Geophysical Fluid Dynamics Laboratory Atmospheric Model version 4 has cubed-sphere topology with 96 × 96 grid boxes

per cube face (approximately 100 km grid size) and 33 levels in the vertical, contains an aerosol bulk model that generates

mass concentration of aerosol fields (sulfate, carbonaceous aerosols, sea salt and dust) from emissions and a “light” chemistry540

mechanism designed to support the aerosol model but with prescribed ozone and radicals Zhao et al. (2018). The model is

driven by time-varying boundary conditions, and natural and anthropogenic forcings developed in support of CMIP6 Eyring

et al. (2016), except for ship emission of SO2 (BC ship emission is included), which has unintentionally not been included. The

dust is emitted from constant sources with their erodibility, a function of surrounding orography Ginoux et al. (2001). The sea

salt emissions are based on Mårtensson et al. (2003) and Monahan et al. (1986) for fine and coarse mode particles, respectively.545

Aerosols are externally mixed except for black carbon which is internally mixed with sulfate. The optical properties of the

mixture are calculated by volume weighting of their refractive indices using a Mie code. In the present configuration, the

model is run with observed sea surface temperatures (SSTs) and sea-ice distribution ?. In addition, the wind components

are nudged, with a 6-hour relaxation time, towards the NCEP-NCAR re-analysis provided on a T62 Gaussian grid with 192

longitude equally spaced and 94 latitude unequally spaced grid points ((Kalnay et al., 1996)). This resolution is lower than in550

GFDL-AM4, which may create a low bias of aerosol emission depending on surface winds.

In Fig. 5, aerosol emission from GFDL-AM4 are within 25% of the ensemble mean, except for SO2 and SO4, which are the

lowest among all models essentially because ship emissions are missing in the simulations. The lower emissions of sulfur

compounds does not translate in low atmospheric burden (Fig. 6) as their lifetime is among the highest between the models

(Fig. 7), either because of weak oxidation or deposition. On the other hand, the other aerosols have a shorter lifetime than555

other models (Fig. 7) while their burdens are well within 25% the AP3 mean values (Fig. 6). The opposite bias between sulfur
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compounds and the other aerosols suggest an issue with oxidation of SO2 rather than wet or dry deposition. In Figure 8) the

MEC values are within the diversity of the AP3 models except for sea salt which is lower by a third. This may be because of

the cap at 97% relative humidity on the hygroscopicity or the emission parameterisation, as the scheme of Mårtensson et al.

(2003) generates much less sea salt sub-micron particles than Monahan et al. (1986). The GFDL-AM4 AODs from individual560

species (Fig. 9) are within the AP3 model diversity except BC, which has the highest value most likely due to the treatment

of its internal mixing with sulfate. This high bias will convert into high bias of fine mode AOD, as it appears in Figure 10

where the positive biases of fine mode AOD compare to AERONET and ATSR-SU are the largest among all models. Other

normalized biases are relatively weak compared to other models (Figure 10). AOD bias is slightly negative against AERONET

and the different satellites, and differences in these biases mostly represent the biases found for the different satellites at565

AERONET stations (cf. Fig. 2). However, it is important to note, that this model version reported all-sky AOD, while most

other models report AOD at clear-sky, which would likely shift the biases towards increased underestimation of AOD (cf.

e.g. Sect. 4.11, see also Tab. LINK TO OPTICS QUESTIONNAIRE (PLEASE CHECK AND FILL IF YOU HAVE NOT

DONE SO)). Overall, optical properties are well correlated with observations with coefficients greater than 0.74 except for

the scattering and absorption coefficients provided by the surface in-situ data with values at 0.49 and 0.57, respectively (Fig.570

11). Concerning the Angstrom exponent, one set of value (AERONET) gives poor correlation (0.52) while another (ATSR-SU)

provides reasonable correlation (0.74).

4.9 GISS-OMA

GISS-OMA is the short name of the GISS ModelE Earth system model (Kelley et al., will be submitted to JAMES before

12/31/19), coupled with the One-Moment Aerosol scheme (OMA; Bauer and Tsigaridis, submitted to JAMES). In OMA, all575

aerosols are externally mixed and tracked by their total mass only, except for sea salt and dust where 2 and 5 size-resolved

sections are used, respectively. OMA tracks sulfate, nitrate, ammonium, carbonaceous aerosols (black and organic carbon),

dust (up to 16um) and sea salt (up to 4um).

Relevant to this work, a random maximum cloud overlap is calculated in the column, which is then used to define a totally

cloudy or totally cloud-free state in radiation, using a pseudo-random number generation. This is described in Hansen et al.580

(1983). For all-sky AOD calculations 100% relative humidity is used, while for clear-sky we use ambient. This applies to

the whole atmospheric column, as dictated by the random maximum cloud overlap calculation. In GISS-OMA there is no

calculation from AE. Instead, we calculate it from the AOD calculations in radiation, which are probably underestimating

AOD at 870nm by about 10%.

– MEC of SS, SO4, NO3 and BC are very high585

– Coarse mode AOD overestimated, particularly over the ocean (cf. ATSR comparison)

– Highly underestimated Angstrom Exponent (in agreement with overestimated coarse mode)

– ONLY MODEL THAT SHOWS OVERESTIMATED SURFACE SCATTERING (+20% NMB) AT GAW STATIONS.
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4.10 INCA

The INCA (INteraction with Chemisty and Aerosols) and ORCHIDEE land surface modules has been coupled to LMDZ590

dynamical core to conform the LMDZORINCA model. It has been run with forced sea-surface temperatures, sea-ice con-

centrations and with nudged monthly wind-fields from ERA-Interim. The comparisons with the climatological simulations

without nudged-winds shows slightly larger emissions of those aerosols driven interactively by wind at the surface Balkanski

et al. (2004), Schulz et al. (2009). The aerosol modelling in INCA relies on a modal approach to represent the size distribution

of DU, SS, BC, NO3, SO4, SO2 and OA with a combination of accumulation and coarse log-normal modes (both soluble and595

insoluble). Since these runs use a simplified chemistry scheme, DMS emissions are prescribed and not interactively calculated,

and the secondary organic aerosols are not simulated. Hence the organic aerosols are underestimated by this model (cf. low

burden in Fig. 6). The current version is modelling BC as internally mixed with sulphate (Wang et al. (2016)), where the refrac-

tive index is estimated using the Garnet-Maxwell method. This results in an increased and more accurate BC absorption. On

the other hand, the dust refractive index is deduced from dedicated experiments Biagio et al. (2017, 2019) showing a marked600

impact on the longwave part of the spectrum. This results in a less absorbing dust aerosol. BC emissions are derived from

inventories and are equally partitioned between surface and altitude.

The emissions of dust and sea-salt have values close to the ensemble mean. With LMDZORINCA the global emitted mineral

dust is 1560 Tg/yr (cf. Fig. 5) is within the interval proposed by Kok et al. (2017) for fine and coarse modes. The simulations are

based on a coarse insoluble mode (MMD=2.5 µm and σ). Meanwhile, an improved version with 4 modes (Albani et al, in prep)605

shows that including larger particles implies significant higher emissions, although burdens do not increase as substantially as

emissions due to the small lifetime of larger particles (R.Checa-Garcia et al., in prep). Sea salt the emissions amount to

4030 Tg/yr and include accumulation and coarse soluble modes (the super-coarse mode is calculated but not included in this

estimation). OA emissions (48.3 Tg/yr) are underestimated compared to other models (ensemble mean 98.2 Tg/yr) because

SOA formation is not accounted for. This also explains the comparatively low burden of OA (0.79 Tg, cf. Fig. 6). All lifetimes610

are close to the ensemble central values but for dust and sea-salt the value given by the models depends on the cutoff applied

to the size distribution. For dust our lifetime is estimated to be close to 4 days.

Our values of MEC are close to the ensemble mean, for those aerosol species modelled by a single mode (like dust) we

expect less spatial variation of MEC that other models with several modes. Regarding optical properties, the AE has smaller

values, due to an smaller dynamical response for wavelength in the visible with respect to other models. The estimations of615

optical depths has been done based on clear-sky relative humidity every 3 hours. The total aerosols optical depths indicates

a slight overestimation over the multi-model central values, due to the overestimations of SO4 optical absorption partially

compensated by the expected lower values of OA optical depths.

4.11 NorESM2

The atmosphere module in NorESM2 (NorESM2-MM, see Seland et al., in prep), CAM6-Nor (Olivie et al., in prep.), is an620

updated version of CAM5.3-Oslo, for which optical properties have been described and validated by Kirkevåg et al. (2018).
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Seen in conjunction with these studies, the results presented here can be interpreted as follows. The dust burden is the lowest

(5.7 Tg) among the AP3 models, and also low compared to the burden in the un-nudged NorESM2-LM simulation (9.9 Tg),

and in CAM5.3-Oslo with fSST and nudged meteorology for year 2000 (16.3 Tg). The lifetime of dust is 1.9 days and is about

the same in all these simulations. This is consistently also the lowest among the AP3 models. The large drop in burden from625

CAM5.3-Oslo and the un-nudged NorESM2 is to a large degree a result of tuned dust emissions, while the change between

the un-nudged (1870 Tg/yr) and the nudged (1090 Tg/yr) NorESM simulations with fSST is consistent with the considerably

lower U10 (especially over land) and dust emissions in nudged vs. free meteorology. While NorESM sea-salt emissions are

among the lowest for AP3, the burden is mid-range, and with the highest MEC (4.1 m2/g), this model has the highest sea-

salt AOD values, which is reflected in the positive coarse mode bias against AATSR satellite observations (cf. Fig 10). The630

relatively high MEC is likely due to SS particle sizes which are shifted towards the more optically efficient accumulation mode,

compared to other AP3 models Sea-salt MEC was even higher in CAM5.3-Oslo (5.0 m2/g), but a change in assumed RH (from

all-sky to clear-sky) for hygroscopic growth brought about a ca. 19% reduction. The excessive sea-salt AOD is a result of

tuning of the CMIP6 control simulation for NorESM2 with respect to radiative balance at TOA. Compared with AERONET

(mainly continental stations) AOD is underestimated, particularly by fine mode particles. One possible reason may be that635

nitrate aerosols and anthropogenic SOA are not taken into account in the model. Despite missing anthropogenic SOA, our OA

burden is still among the highest compared to the other models. Due to the overestimated extinction by sea-salt, AE is more

underestimated compared to satellite (ocean areas dominate) than to AERONET (mainly continental stations), but the over-all

AE bias is close to the AeroCom AP3 mean. The large underestimate in surface scattering and absorption compared to EBAS

is consistent with the underestimated AOD over the continents, but as for the majority of the models, the negative bias here is640

stronger than for the vertically integrated AOD values (compared to AERONET). The high negative bias in surface absorption

is consistent with the low dust burden, resulting from the low emissions and short lifetimes (cf. Figs. ), compared to the other

models (cf. Figs. 5, 6, 7)

4.12 OsloCTM3

The OsloCTM3 is a global, offline CTM driven by 3-hourly meteorological data from the European Centre for Medium Range645

Weather Forecast (ECMWF) Integrated Forecast System (IFS) model, and is an updated version of the OsloCTM2 used in

previous AeroCom phases (Søvde et al. (2012), Lund et al. (2018)). The model is run in a 2.25°x2.25° horizontal resolution,

with 60 vertical levels (the uppermost centered at 0.1 hPa) using the Community Emission Data System (CEDS) (Hoesly et al.

(2018), van Marle et al. (2017)) emission inventory. The treatment of transport and scavenging, as well as individual aerosol

modules, is described in detail in Lund et al. (2018) and references therein. In OsloCTM3, the absorption properties have650

been updated, with BC mass absorption coefficient (MAC) following formula in Zanatta et al. (2016) and a weak absorption

implemented for OA (Lund et al. (2018)). OsloCTM3 has a BC MAC value of 12 m2/g and BC MEC is among the highest

between the models (Fig. 8). The implementation of stronger absorption contributes to the high positive bias (+73%) in surface

absorption compared to the surface in-situ observations and in contrast to the other models, which tend to underestimate

surface absorption at the in-situ locations (Fig. 10). The burden of nitrate is low, and sulfate high compared to the other655
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models, whereas all other aerosol species in OsloCTM3 are close to model mean values. An evaluation of the burdens and

AOD simulated by the OsloCTM3 for year 2010 CEDS emissions against in-situ and remote sensing observations is provided

by Lund et al. (2018). The optical properties for aerosols emitted from biomass burning assume internally mixed aerosol and

thus, the reported AOD from BC and OA includes only fossil fuel and biofuel emissions (cf. Fig. 9). This results in lower AOD

from OA for OsloCTM3 compared to the other models. The combined BC+OA contribution to AOD amounts to 0.0086. Only660

all-sky (AS) AOD is provided from OsloCTM3 (cf. Tab. A1 for models that provided CS). This is done because a reliable

sub-grid scale parameterisation for RH is unavailable, in order to avoid the AOD used in the radiative transfer calculations to

be biased low or high. Compared with the observations, AOD is slightly underestimated, both at AERONET sites (-6%) and

the satellite comparisons suggest slightly higher underestimations. The low bias ( -20%) for AE is consistent between ground

and satellite retrievals and is also reflected in the low bias for coarse and high bias for fine AOD (Fig. 10). In contrast to surface665

absorption, the surface scattering is biased low compared to observations, which would result in a strong low bias in single

scattering albedo. Correlation with the observations is generally among the higher ones compared to the other models (Fig.

11).

4.13 SPRINTARS

SPRINTARS (Takemura et al. (2005, 2009)), coupled with a coupled atmosphere-ocean general circulation model (MIROC,670

Tatebe et al. (2019)), is used in this study although there is also a version coupled with a global cloud resolving model, NICAM

(e.g., Sato et al. (2016)). The calculated dust and sea salt emissions with nudged wind field by meteorological reanalysis data

are smaller than those without nudging because the emission amounts strongly depends on the wind speed near the surface (cf.

Sect. 4.11), which are proportional to 3rd and 3.41th powers, respectively. The 6-hourly reanalysis data cannot represent the

gust of wind. The difference between the case with and without nudging is larger in finer horizontal resolution. SPRINTARS675

has one of the finest resolutions among the participating models in this study. SPRINTARS estimates the global and annual

total emissions of dust and sea salt to be 1390 Tg/yr and 3390 Tg/yr, respectively (cf. Fig. 5) with the horizontal resolution

of T85 (approx. 1.4˚×1.4˚). Both the lifetime of sea-salt and dust are short compared to the other models (Fig. 7), and in

case of dust this may be attributed to strong wet deposition over the outflow regions. This, combined with the low emissions,

explains the low burdens of these natural species (Fig. 6 and ultimately explains the fact that all extensive optical properties680

are underestimated against the various observations (cf. Fig. 10). On the other hand, the calculated AE by SPRINTARS is

underestimated, suggesting an overestimation of particle size over the whole particle size distribution. However, for this model,

this could be attributed to inappropriate computation of standard deviations of log-normal size distributions of SO4 and OA

when calculating optical properties based on the Mie theory.

The diagnosed AE calculated from prognostic mass mixing ratio of each aerosol component from has been confirmed to be685

around 1.5 over the industrialized and biomass burning regions with the appropriate standard deviations of the size distributions.

This revision results in the smaller bias of AOD, and the global annual mean value is 0.112 (as opposed to 0.072 found in this

study, cf. Fig. 9).
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– AE does not exceed 1, why???

– Underestimated AE suggests particles are too large, but this seems inconsistent with the fact that coarse mode AOD690

seems to show highest underestimation (around -80%).

– All optical parameters are underestimated agains the various observations.

– Fine mode looks best (-23% bias against AERONET)

– MECs appear to be in range of other models (OA high MEC of 7.3)

– Burden as well (like MEC)695

– Seasalt and and SO4 lifetimes low. This may lead to reduced hygroscopic growth and hence underestimated optics.

– Missing natural aerosols?

5 Conclusions

TAKE HOME MESSAGES? ANYONE FEEL FREE TO ADD TO THE BULLET LIST

– AOD underestimated by about -20% on average and lowest spread among the models.700

– AE underesimated by about -10%, indicating that particles are too large

– Mention consistency in bias over time (link with Augustins paper)

– Models don’t get the size right (AE)

– Mention that the satellite comparisons are consistent with what we know about the models (e.g. high negative coarse bias

in SPRINTARS (which misses SS and DU) and vice versa for NorESM, and that this would not be possible to identify705

easily using only ground based, mostly continental measurements.

– For the first time, columnar remote sensing and surface in-situ optical properties were evaluated.

– Surface in-insitu and coarse mode AOD show highest underestimation

– Missing natural aerosols (i.e. the models with lowest dust and seasalt emissions or shortes residence times showed

highest negative bias in coarse AOD).710

– More measurements needed for better spatial coverage.

– Mention that some models reported CS AOD, others AS

– ...
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Code availability. TEXT

Data availability. TEXT715

Code and data availability. TEXT

Appendix A: GAW site evaluation biases

INTRODUCE AND EXPLAIN RESULTS SHOWN IN Figs. A1 and A2.

And why this is shown (because these data has not been used so far for model evaluation and deserves more detailed / careful

treatment.720

In general, representativity of GAW sites tends to be less sensitive to grid size than AERONET (Wang et al. (2018)).

Appendix B: Sensitivity studies related to spatiotemporal representativity results

As introduced in Sect. 3.4 and summarised in Tab. 3, several tests have been performed in order to investigate the spatiotemporal

representativity and associated uncertainties. The results of tests related to temporal representativity errors are shown in Figs.

A3, A4, the former being an analysis of monthly vs. 3hourly AOD data vs. AERONET and the latter being an analysis of725

hourly vs. monthly using surface in-situ absorption data. Both tests do not indicate that the magnitude of these uncertainties

in the network-averaged annual statistics exceed 10% in NMB or 0.15 in correlation. Particularly, the results from the in-situ

test differ by only 2.4% in NMB which may be attributed to the fact that these data generally shows more continuous sampling

coverage throughout the 24h of each day as these techniques do not rely on the availability of sunlight.

An investigation of spatial representativity errors was done for AERONET AODs, by choosing a subset of sites considered730

representative based on Wang et al. (2018). The result is shown in Fig. A5 and also does not show substantial differences in

light of the diversity found in between the models (cf. Figs. 10 and 11).

Appendix C: Pyaerocom and web visualisation

Pyaerocom (Github: https://github.com/metno/pyaerocom, Website: https://pyaerocom.met.no/) is an open source python soft-

ware and is being developed focussing on model evaluation within the AeroCom initative.735

All results from the optical properties evaluation discussed in this paper are available online at:

https://aerocom-evaluation.met.no/overall.php?project=aerocom&exp=PIII-optics2019-P# (last access: 20.12.2019)
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The website allows to explore the data from many angles and includes interactive visualisations of performance charts,

scatter plots, bias maps and individual station timeseries data, for all models and observation variables, as well as barcharts740

summarising regional statistics.
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Table 1. Observations and optical property variables used in this study, including other relevant meta information.

ID Source Var. Ver. Lev. Freq. Clim. #st.

Date

GAW EBAS Abs. coeff. 3 hourly Y 39

2019/12/18

GAW EBAS Sc. coeff. 3 hourly Y 37

2019/12/18

AERONET Sun AE 3 2 daily N 250

2019/09/20

AERONET Sun AOD 3 2 daily N 240

2019/09/20

AERONET SDA AOD<1$\mu$m 3 2 daily N 226

2019/09/20

AERONET SDA AOD>1$\mu$m 3 2 daily N 226

2019/09/20

MODISt terra AOD 6.1 3 daily N 2235

2019/11/22

MODISa aqua AOD 6.1 3 daily N 2241

2019/11/25

ATSR-SU Swansea AOD 4.3 3 daily N 2055

2016/09/30

ATSR-SU Swansea AE 4.3 3 daily N 2055

2016/09/30

ATSR-SU Swansea AOD<1$\mu$m 4.3 3 daily N 2055

2016/09/30

ATSR-SU Swansea AOD>1$\mu$m 4.3 3 daily N 2055

2016/09/30

MERGED-

FMI

FMI AOD monthly N 2080

2019/10/21
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Table 2. Models used in this study including horizontal grid resolution, number of levels and references. Insert more references and link

them properly; Remove AEROCOM-MEAN here

Name Res (Lat., Lon.) Levels References

CAM5-ATRAS 1.9 x 2.5 30

EC-Earth 2.0 x 3.0 34 Van Noije, T.P.C., et al. (Geosci. Model Dev.,

7, 2435-2475, 2014); Van Noije, T.P.C., et al.,

(manuscript in preparation)

TM5 2.0 x 3.0 34 Van Noije, T.P.C., et al. (Geosci. Model Dev.,

7, 2435-2475, 2014); Bergman, T., et al.,

(manuscript in preparation)

ECHAM-HAM 1.9 x 1.9 47

ECHAM-SALSA 1.9 x 1.9 47

ECMWF-IFS 0.4 x 0.4

EMEP 0.5 x 0.5

GEOS 1.0 x 1.0 72

GFDL-AM4 1.0 x 1.2 33

GISS-OMA 2.0 x 2.5 40 Koch et al., 2006; 2007; Tsigaridis et al., 2013

INCA 1.3 x 2.5 79

NorESM2 0.9 x 1.2 32

OsloCTM3 2.2 x 2.2 60 Myhre et al. 2009 (ACP, 9, 1365-1392); Lund et

al., 2018 (GMD, 11, 4909-4931)

SPRINTARS 0.6 x 0.6 56 Takemura et al. (J. Geophys. Res., 2000,

17853-17873) (J. Climate, 2002, 333-352) (J.

Geophys. Res., 2005, 2004JD005029) (Atmos.

Chem. Phys., 9, 3061-3073)
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Table 3. Results from sensitivity studies related to spatio-temporal representation errors. AERONET* indicates that two different site selec-

tion schemes where used (cf. text and Fig. A5). See also Tab. A2 for an assessment of satellite resampling sensitivities.

.

Test type Var. Model Freq. Obs ∆NMB [%] ∆R Fig.

Temporal Abs. coeff. TM5 (INSITU) hourly In-situ (GAW) -2.3 +0.20 A4

Temporal AOD ECMWF-IFS 3-hourly AERONET +6.9 -0.10 A3

Spatial AOD ENSEMBLE monthly AERONET* -3.6 -0.04 A5
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Table A1. Model names and corresponding AeroCom IDs. Also indicated is whether the AODs were diagnosed as clear-sky (CS) or not and

which models were included in the ensemble.

Name AeroCom ID CS AOD Ensemble

CAM5-ATRAS CAM5-ATRAS_AP3-CTRL Y Y

EC-Earth EC-Earth3-AerChem-met2010_AP3-CTRL2019 Y Y

TM5 TM5-met2010_AP3-CTRL2019 Y Y

ECHAM-HAM ECHAM6.3-HAM2.3-met2010_AP3-CTRL Y Y

ECHAM-SALSA ECHAM6.3-SALSA2.0-met2010_AP3-CTRL Y Y

ECMWF-IFS ECMWF-IFS-CY45R1-CAMS-CTRL-met2010_AP3-CTRL Y N

EMEP EMEP_rv4_33_Glob-CTRL N Y

GEOS GEOS-i33p2-met2010_AP3-CTRL N Y

GFDL-AM4 GFDL-AM4-met2010_AP3-CTRL N Y

GISS-OMA GISS-ModelE2p1p1-OMA_AP3-fSST Y Y

INCA INCA_AP3-CTRL Y N

NorESM2 NorESM2-met2010_AP3-CTRL Y Y

OsloCTM3 OsloCTM3v1.01-met2010_AP3-CTRL N Y

SPRINTARS MIROC-SPRINTARS_AP3-CTRL Y Y
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Table A2. Comparison of statistical parameters (NMB and R) retrieved when colocating models with satellite data 1. in daily resolution and

in highest available horizontal resolution from both data-sets (High and 2. when colocating in monthly resolution and 5× 5◦ horizontally

with requirement of at least 7 daily values to compute a monthly mean, as done in this study (Low).

Stat NMB [%] R

Res Low High Low High

Mod Sat Var

CAM5-ATRAS AATSR4.3-SU AOD -1.75 -2.14 0.67 0.51

MODIS6.1-aqua AOD -25.88 -20.40 0.58 0.36

MODIS6.1-terra AOD -33.28 -28.21 0.58 0.36

ECMWF-IFS AATSR4.3-SU AE -47.25 -36.86 0.74 0.65

AOD -19.20 -22.78 0.79 0.70

MODIS6.1-aqua AOD -35.47 -24.37 0.64 0.51

MODIS6.1-terra AOD -41.92 -31.49 0.62 0.51

EMEP AATSR4.3-SU AE 36.57 42.61 0.67 0.50

AOD -34.40 -30.38 0.73 0.58

AOD<1$\mu$m -10.88 -2.56 0.74 0.57

AOD>1$\mu$m -69.81 -69.25 0.64 0.54

MODIS6.1-aqua AOD -45.39 -40.26 0.66 0.48

MODIS6.1-terra AOD -50.77 -45.66 0.66 0.48

OsloCTM3 AATSR4.3-SU AOD -12.35 -13.43 0.83 0.69

MODIS6.1-aqua AOD -27.38 -28.25 0.72 0.52

MODIS6.1-terra AOD -34.56 -35.21 0.72 0.51

SPRINTARS AATSR4.3-SU AE -51.16 -41.39 0.59 0.52

TM5 AATSR4.3-SU AE 2.92 8.71 0.74 0.62

AOD -1.84 -3.93 0.75 0.55

AOD<1$\mu$m 3.42 3.42 0.81 0.66

AOD>1$\mu$m -9.76 -14.64 0.64 0.41

MODIS6.1-aqua AOD -19.93 -18.23 0.73 0.53

MODIS6.1-terra AOD -27.80 -25.95 0.72 0.52
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Figure 1. Yearly averages of AODs from AERONET and merged satellite dataset (top panel), fine and coarse AOD from AERONET (2nd

panel), AE from AERONET and ATSR (3rd panel) as well as surface in-situ observations of scattering and absorption coefficients.
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Figure 2. NMBs from satellite evaluation against AERONET for different variables. Also plotted are the corresponding correlation coeffi-

cients in green colors. Note that fine and coarse AOD from MODIS terra is not further used in this study.
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Figure 3. Left: maps showing yearly averages of relevant variables from the ensemble model as well as mean values from corresponding

ground-based network used (circles). Also shown are the yearly mean values from model (both global and at obs. stations) as well as the

observation mean from all stations. Right: diversity fields of ensemble mean calculated using standard deviation of the individual results

normalised by the mean (cf. Textor et al. (2006))
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Figure 4. Figure showing NMB in percent of the ensemble median AOD against the merged satellite AOD dataset (circles, only ocean

locations are displayed) and AERONET (triangles) as well as surface scattering coefficient against the in-situ sites (diamond). The edge

colors of the markers correspond to the respective global average NMB, which is also indicated in the legend as well as Pearson correlation

and total number of data points and stations / coordinates.
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Figure 5. Global emissions of major aerosol species and precursors. Units are full molecular weight and for OA, the total organic weight is

used. Note that only major species are included and that other potentially provided species (e.g. NOx or NH3, VOCs) are not shown. The

rightmost columns show mean, median and spread of the results from the individual models, the latter being computed as the half difference

between 1st and 3rd quantiles. Note that displayed precision varies for each row and colors are applied row-wise in order to highlight

differences between the models.
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Figure 6. Global annual burdens of major aerosol species in units of Tg. A more detailed description of this plot type is provided in Fig. 5.
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Figure 7. Global lifetimes in days of aerosol species computed from burdens (Fig. 6 and total deposition (wet + dry). A more detailed

description of this plot type is provided in Fig. 5.
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Figure 8. Globally averaged columnar MECs of models for all major aerosol species. The MECs for each species i were computed via

ODi/LOADi (cf. Figs. 6, 9). Note that the two ECHAM models reported the ODi fields at dry conditions (Fig. 9) and show hence, compara-

tively small MECs for the hygrophilic species. A more detailed description of this plot type is provided in Fig. 5.
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Figure 9. AODs from individual species as well as the sum and, dependent on availability clear-sky and all-sky AOD. Please note that for

OsloCTM3 an additional OD of 0.0086 due to biomass burning was reported (combination of OA and BC) which is not included here. A

more detailed description of this plot type is provided in Fig. 5.
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Figure 10. Normalised mean bias (NMB) computed from the monthly collocated data for each model (columns) and observation / variable

combination (rows). For the 5◦ × 5◦ satellite products, area weights were applied to compute the average bias. Please note that the biases do

not represent global averages but the site / sampling locations of each data-set with more weight given to regions with higher spatial density

(see e.g.Fig. 1). Please also note potential offsets in the absolute biases arising from uncertainties in the observation retrievals, particularly

for the satellite products (cf. Sect. 2.4 and Fig. 2).
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Figure 11. Pearson correlation coefficients (R) computed from the monthly colocated data for each model (columns) and observation /

variable combination (rows). For the 5◦×5◦ satellite products, area weights were applied to the monthly values. Please note further remarks

on representativity in Fig. 10.
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Figure 12. Results from optical properties evaluation DESCRIPTION FOLLOWS BUT ESSENTIALLY A COMBINED VERSION OF

THE PREV. 2 HEATMAPS HERE INCLUDING MEAN; MEDIAN AND STD
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Figure A1. Model biases of surface dry scattering at all in-situ sites that had sufficient temporal coverage to compute monthly climatology.
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Figure A2. Model biases of surface absorption coefficient at all in-situ sites that had sufficient temporal coverage to compute monthly

climatology.
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Figure A3. Scatter plot showing results of 3-hourly (left) vs. monthly (right) colocation of AOD from ECMWF-IFS model against

AERONET all points data. Also included are statistical results.
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Figure A4. Scatter plot showing results of hourly (left) vs. monthly (right) colocation of in-situ surface absorption from TM5 model (from

AeroCom INSITU experiment, i.e. different version than the one used in this study) evaluated at GAW stations. Also included are statistical

results.
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Figure A5. Scatter plot showing colocation results of the ENSEMBLE model AOD evaluated at all available AERONET stations (left) and

evaluated only at stations with small spatial representativity errors, selected based on the results from Wang et al. (2018)
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