
Technical issues related to using the ARI mini for eddy covariance or chamber measurements

Topics

- Relationship between flow rate, time constant and sample pressure.
- Real-time water corrections to obtain real-time dry air mixing ratios.
- Data integration issues
- Value of Team Viewer
- Input from group

Flow Rate and Response Time

- Three fundamental quantities: τ , P_c and Φ .
- Two constraints inlet and outlet valves
- So, one can choose two variables freely. Third variable is determined by:

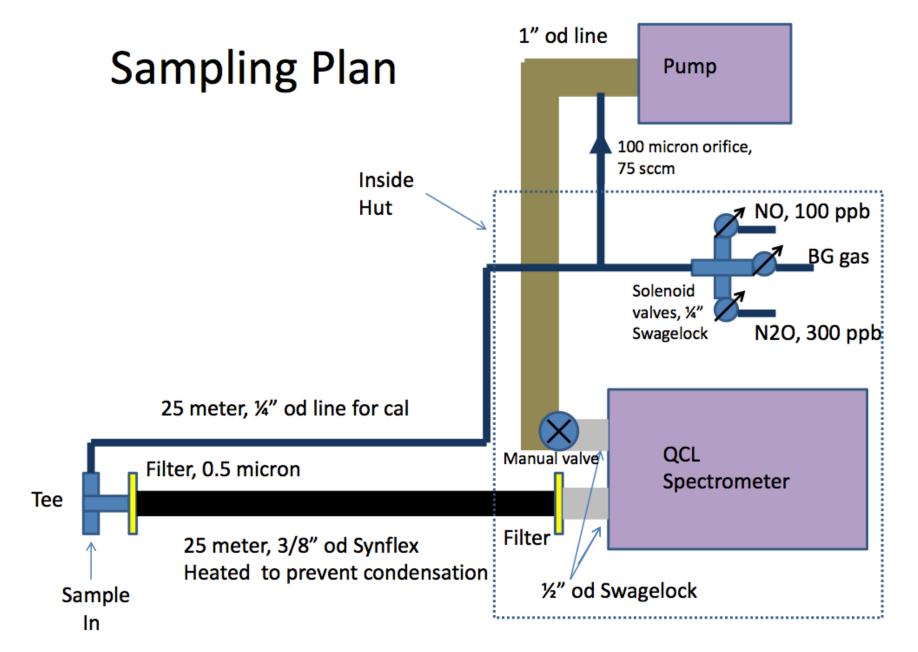
$$\tau (s) \sim 0.072 * P_c(Torr) * V_c(I) / \Phi(slpm)$$
 (1)

Working with Equation (1)

$$\tau (s) \sim 0.072 * P_c(Torr) * V_c(I) / \Phi(slpm)$$
 (1)

- P_c is measured continuously (20 to 50 Torr)
- V_c is constant (0.5 liters)
- τ can be measured by flow switching (0.1 to 5 sec)
- Φ can be measured with flow meter (0.1 to 20 slpm) [It is useful to have a flow meter available]

Small τ is critical for eddy covariance; small Φ is often critical for chambers.

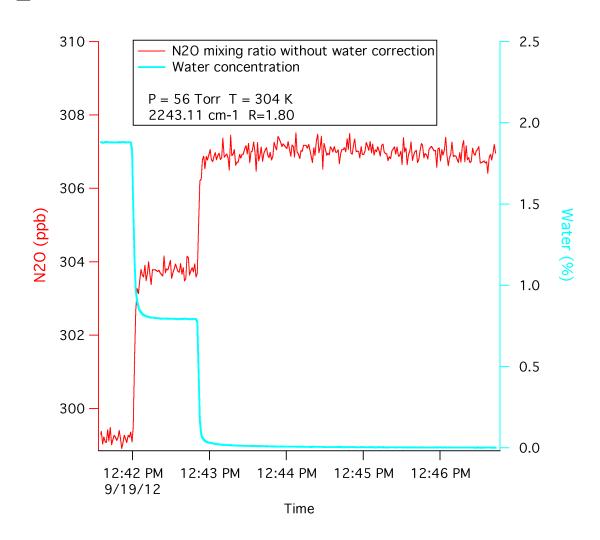

How to set control valves for low flow

- With low flow both valves are operated as critical orifices
 - CV_i controls the flow rate, Φ
 - CV_0 controls time response, τ
 - Pressure follows from Equation (1)
- Practical Procedure #1
 - Open CV_o completely.
 - Adjust CV_i to set the desired flow rate, Φ (do not need flow meter).
 - Adjust CV_o to set the cell pressure, P_c, to its desired value. This will also set τ but the cell pressure is easier to monitor.
- Practical Procedure #2
 - Turn on pressure lock
 - Adjust CV_0 to set the desired flow rate, Φ (requires flow meter).

How to set control valves for high flow and fast time response

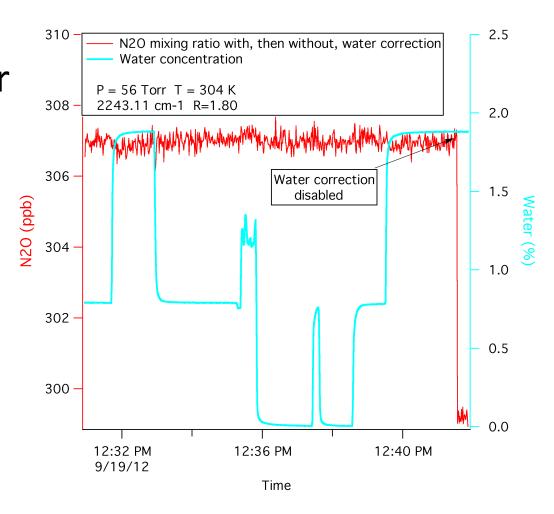
- CV_o must be wide open (and tubing to pump must be large diameter, 25 mm ID)
 - This implies: $\tau(s) \sim V_c(l) * [60/S_p(lpm)]$
 - Typically $S_D \sim 500$ lpm so that $\tau(s) \sim 0.06$ s
- Adjust CV_i to set P_c and Φ
 - Might be necessary to set P_c lower than optimal
- Helpful inlet hints:
 - Use at least 9 mm OD tubing on inlet
 - Keep inlet filters clean; use parallel filters

Eddy covariance flow scheme

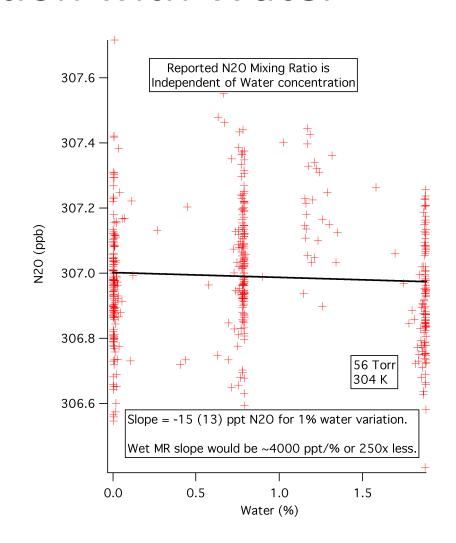


Real Time Water Correction

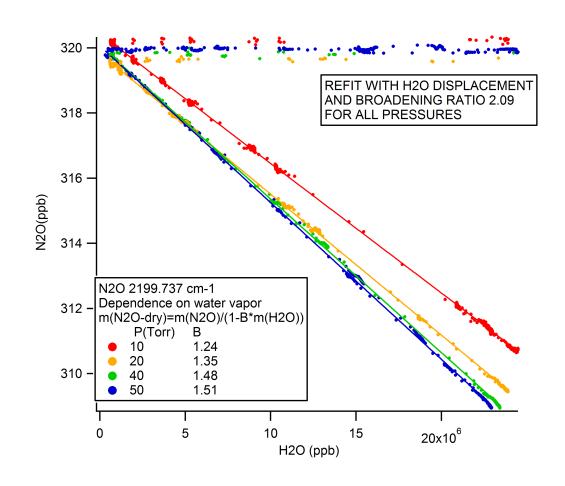
- Both eddy covariance and chamber measurements desire dry air mixing ratios
- This can be accomplished with Nafion dryer or dry ice trap before instrument but...
 - Expensive
 - Imperfect, failure prone
 - Prevents recirculation experiments
- By measuring water vapor mixing ratio we report dry air MR even though we measure wet air


Usual Effect of Water on Measured N₂O Mixing Ratio

- Software reports the true MR not the dry MR
- Variation is greater than pure dilution


Effect of Water on Measured N₂O Mixing Ratio with Software Correction

- TDLWintel uses measured water to correct for water dilution and water spectral broadening
- Slows down fitting a bit


Dry Air Mixing Ratio Shows No Correlation with Water

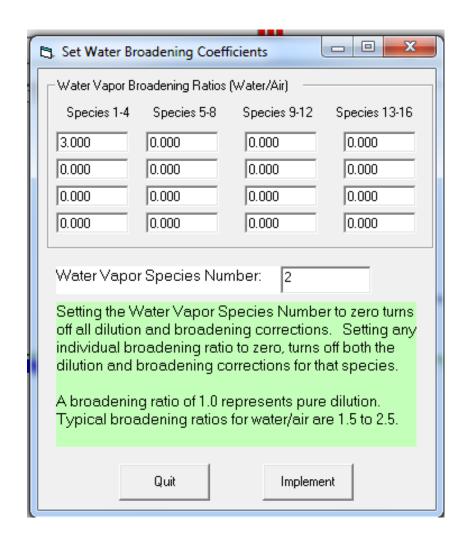
- Dependence of dry air mixing ratio is too small to measure
- Reduced by at least 250x
- Independent of cell pressure

Dry Air Mixing Ratio Eliminates Pressure Dependence

- Simpler correction methods depend on pressure
- Using proper spectral model provide pressure independent correction factor

Water Broadening Correction Factors

Correction factor is interpreted as the ratio of the water broadening coefficient to that of the air broadening coefficient


- Usually not known from literature
- Since the pressure broadening is a function of spectral line – correction factors must be determined for each spectral line

Experimental Water Broadening Ratios

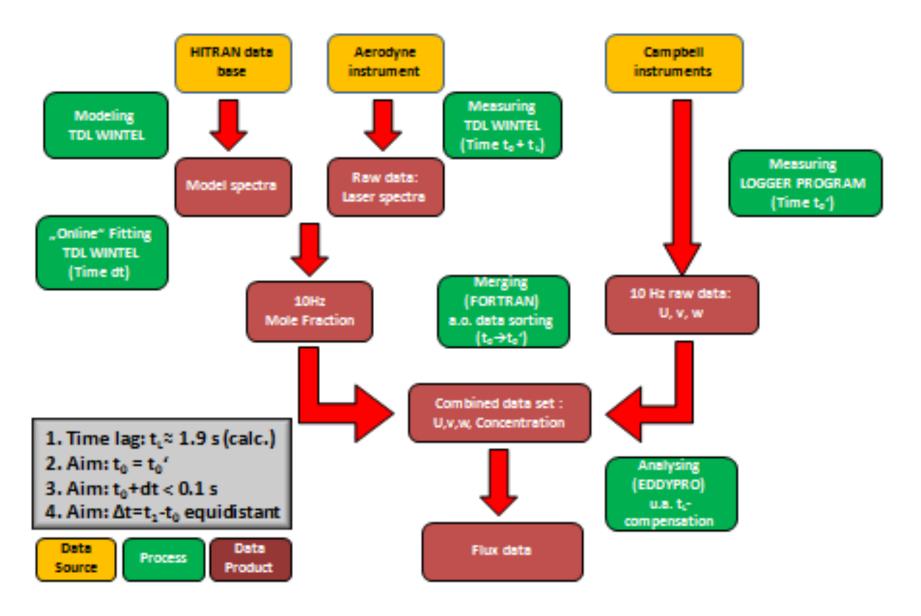
N2O	Frequency (cm-1) 2243.11 1275.49 2237.66 ~1275 2199.74 2199.74	1.80 1.53 1.704	Instrument Julich IMK6 IMK6 ZALF VTI1 VTI2
CH4	Frequency (cm-1) 1276.85 ~1275 Frequency (cm-1)	CF 1.55 1.9 CF	Instrument Julich ZALF Instrument
со	2242.91 Frequency (cm-1) 2199.93 2199.93	2.50 CF 2.1 2.1	Julich Instrument VTI1 VTI2

Water Broadening: Software Details

- Must specify a correction factor for each molecule
- Must specify species number that corresponds to water vapor
- Select this menu under: Edit\Water Broadening...

Eddy Covariance Data Integration Issues

- Eddy covariance depends on observing fast correlations between wind speed and mixing ratio
- QCL data must be sufficiently fast
- QCL and sonic must be perfectly synchronized
- Potential Obstacles:
 - No man should wear two watches
 - Speed of QCL computer?
 - QCL is not a clock data rate can jitter


Two Approaches to Data Integration for Eddy Covariance

- Approach #1 (hard drive, recommended):
 - Save Campbell data to data logger
 - Save Aerodyne data to hard drive
 - Integrate data sets during post processing
 - Calculate flux with Eddy Pro
- Approach #2 (RS232):
 - Save Campbell data to data logger
 - Send Aerodyne data to data logger via RS232
 - Calculate flux with Eddy Pro

Two Approaches to Data Integration: Pros and Cons

- Approach #1 (hard drive, recommended):
 - Requires decent synch between Campbell and QCL
 - Allows careful handling of subtle timing issues
 - Eliminates RS232 cable from QCL to data logger
- Approach #2 (RS232):
 - Requires software on the data logger to read RS232
 - Provides real time and simplified data integration
 - Sweeps subtle timing issues under the rug

Data Processing Scheme

Team Viewer

- Remote control software
- By far, the best way for us to help you succeed
- Secure

- Also very useful to you
- Obstacles:
 - Internet connection
 - NetworkAdministration

You will get more help if you find a way to use TeamViewer!

User Input

 What have we missed that we should talk about?