
1. Introduction

In the 2003 paper, “Updated Guidelines for Atmospheric Trace Gas Data Management”  [WMO,
2003],  recommendations  and guidelines  for  conceiving  and utilizing  a  database  management  system
(DBMS) were  presented  and developed,  followed by  a  description  of  the  DBMS developed for  the
National Oceanic and Atmospheric Administration (NOAA) Earth Systems Research Laboratory (ESRL)
Global Monitoring Division (GMD) Carbon Cycle and Greenhouse Gas (CCGG) Group.  

This paper will describe updates to the database design recommendations with references to how
these design goals have been applied in the current model used by the CCGG Group today.  The original
introduction,  reprinted  below,  is  followed  by  a  revised  guideline  reflecting  the  evolution  of  data
management strategies in the intervening years.   

Making the necessary measurements of atmospheric CO2, its stable isotopes, and other trace gas
species to better our understanding of the global carbon cycle consumes increasing amounts of time and
resources. Changing scientific objectives impose demands for greater measurement precision and better
temporal and spatial coverage. Advances in technology have made these demands attainable. Instruments
have been designed to be more compact, robust, and efficient making it easier to produce reliable in situ
measurements from ships, aircraft,  towers, and from permanent and temporary remote locations. The
quality of sample storage containers used in discrete sampling programs has improved, increasing the
long-term stability of sampled air for a greater number of trace gas species. Semi-automatic analytical
systems have been designed to use smaller volumes of  air enabling multiple-species analyses from a
single ambient sample. Finally, the affordability of computers and electronic storage media has greatly
reduced  a  once  formidable  component  of  the  operational  budget.  This  partial  list  of  advancements
combined with an increasing scientific demand for more observations has resulted in the generation and
accumulation of greater volumes of data. These data must be organized and maintained so that the effort
required to make the measurements results in advances in our understanding of the scientific issues.

Measurement programs maintain records of sample collection details (e.g., collection location,
date), raw analysis data (e.g., chromatograms, voltages), processed analysis data (e.g., mixing ratios,
isotopic ratios), instrument diagnostic data (e.g., temperature, pressure), and standard gas calibration
histories. In many instances, these data are maintained for each trace gas constituent measured. Further,
individual  laboratories  may  operate  both  continuous  and  discrete  (flask  and  cylinder)  measurement
strategies from both fixed (land surface, towers, and ice cores) and moving (ship and aircraft) platforms.
All of this information must be managed so that measurement data can be readily viewed, re-processed,
selected, analyzed, and disseminated. A poor data management strategy can render even the very best
measurements almost useless. Thus, it is imperative that measurement programs employ a well-designed
data management strategy.

The carbon cycle  measurement  community,  and in  particular,  the  CO2 community,  has  spent
considerable  effort  developing  instrument  and  technical  guidelines  for  scientists  entering  into  the
atmospheric  trace  gas  measurement  field  [WMO,  1998].  Guidelines  which  emphasize  measurement
techniques, calibration methods, and common pitfalls, provide fledgling measurement programs with a
“recipe” for obtaining high-precision measurement results more quickly. A similar effort is required for



the  management  and maintenance  of  data  produced by  these  programs.  A first  attempt  to  establish
guidelines for atmospheric trace gas database management is presented. The data management strategy
described  is  a  compendium  of  concepts  in  use  among  many  of  the  laboratories  making  trace  gas
measurements. The National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and
Diagnostic  Laboratory  (CMDL)  Carbon  Cycle  Greenhouse  Gases  (CCGG)  Group  has  committed
considerable resources towards the management of discrete and continuous data from the cooperative air
sampling network, the CMDL baseline observatories, and the tall towers and light aircraft programs.
Many  of  the  examples  presented  are  from  CCGG  programs  that  address  many  of  the  same  data
management considerations as other carbon cycle measurement laboratories. The majority of guidelines
set forth here have been in use by CCGG for many years; however, the CCGG strategy has considerable
room  for  improvement  and  continues  to  evolve  as  the  measurement  programs  expand  and  new
technologies  become available.  This discussion represents the direction in which the CMDL Carbon
Cycle Greenhouse Gases Group is moving towards a robust database management system.
 [Masarie et al., 2003]

In  this  paper,  section  2  contains  discussion  of  five  basic  requirements  for  designing  a  data
management strategy along with commentary on how they can be achieved.  Section 3 delves deeper into
the  design  strategies  needed  to  create  an  effective  relational  database,  with  practical  examples  of  a
‘normalized’ database structure to minimize data inconsistencies and improve data integrity.  Section 4
provides  a  brief  overview of  basic  data  query  and  manipulation  techniques  using  Structured  Query
Language (SQL). 

Sprinkled throughout are facts and examples from the CCGG Group’s data management system,
which currently houses almost 7 million trace gas measurements from discrete air samples and over 90
million measurements from quasi-continuous in situ analyzers.

2. Requirements

Few things are more important when designing a complex data management strategy than fully
assessing and understanding the basic requirements of the project.   The number of concurrent  users,
accountability needs,  projected data growth and intended outputs are just  a few of the questions that
should be considered.  The answers to these questions help inform important decisions on the type and
structure of the data management system to be used.  

Many organizations, when faced with quickly implementing a data management strategy, will
choose a file based system.  Comma Separated Value (CSV) text files or proprietary spreadsheets like
Microsoft Excel are simple, portable and easy to use.  Network file servers and cloud based file shares
make  it  easy  to  share  arbitrary  files  among  users,  allowing a  basic  data  management  system to  be
implemented quickly.  However, the ease of implementation should be carefully weighed against the long
term goals and requirements of the strategy.  File based storage does not scale well when multiple users
and processes need to access a large dataset.  Concurrent modifications by different users can lead to



inconsistencies and corrupted data if not carefully managed and because the file system has no knowledge
about the contents of the dataset, it is not able to help maintain the integrity of the data being stored.

In contrast, a Relational Database Management System (RDBMS) is expressly purposed to share
large datasets with multiple users.  Running on a server in your network (Figure 1), it abstracts away the
details of how data is stored and presents a single logical interface for querying and manipulating records
using Structured Query Language (SQL).  A RDBMS provides a centralized data repository that manages
the many requirements of allowing multiple users and computer programs to access and modify data in a
controlled manner.  By utilizing a ‘relational’ data model (described in section 3.2), a RDBMS allows for
efficient storage that minimizes redundancy and maintains data consistency.  

Figure 1 – Client/server architecture

When looking at  the  needs of a successful  measurement program, it  is  clear  that  a  RDBMS
should be an essential part of the data management strategy.  Fundamental requirements include data
integrity,  scalable  performance,  accessibility,  recoverability  and  traceability.   Each  requirement  is
reviewed and followed with a brief  discussion on how the requirement  can be met  as well  as some
commentary on how it is handled in the NOAA CCGG Group. 

2.1 Data Integrity

Critical  to  the  long  term  success  of  a  measurement  program  is  ensuring  the  accuracy  and
consistency of recorded measurement data.  Any particular measurement has a host of related data that
must be maintained.  Sampling information like location, date and time along with analysis details about
the instrument and its raw output must be recorded.  Information about sampling equipment, ambient
conditions and quality assurance checks need to be documented.  These data points need to all be related
together accurately so that, for example, measurements of different trace gases from the same sample can
be  easily  reviewed.   Multiple  users,  programs  and  processes  will  interact  with,  add  to,  and  update
attributes of the data at various stages of its life cycle.  Maintaining data integrity throughout these stages
is a difficult but vitally important requirement.

Data are more valuable when they are related to other data.  As will be discussed in later sections,
a RDBMS enforces and maintains relationships among data items by design.  By managing how users are
allowed to interact with and manipulate data, a RDBMS also provides an important buffer that can help
enforce integrity rules.  Stored data can be separated into different types, minimizing entry errors such as
an invalid date.  Trigger procedures can be automatically invoked after a modification to verify entries
and log user edits.   Multi-user access can be managed to prevent  issues with concurrent editing and
security rules can ensure only authorized users are allowed to modify data.  



A thoughtfully  designed database  can  help measurement  programs protect  one  of  their  most
valuable assets, but policy and procedures to manage how data are entered are equally important.  

In the CCGG Group, the ability to enter, modify or delete data is restricted to a few designated
users  and funneled  through a  select  group of  computer  programs.   When possible,  data  are  entered
through  automated  processes  like  bar  code  scanners  to  check-in  flask  samples  from  the  field  and
computer programs to process raw analysis instrument output and insert measurement results into the
database.   Manual data entry is minimized, but when necessary, it is carefully reviewed and validated by
a  second  user  to  ensure  accuracy.   Periodic  reviews  of  measurement  results  and  comparisons  to
measurements from different  sources and sampling strategies (e.g.,  flask vs in situ)  are done to find
discrepancies that need to be investigated.  Automated consistency checks along with other error checking
routines help monitor and look for potential issues.  Database triggers are used on select tables for data
validation and to record a history log of data modifications, providing accountability and traceability.

A soundly designed data repository, computer programs to control access and well thought out
policy and procedures are essential components of a successful data management strategy.

2.2 Performance and scalability

Measurement  programs may start  with  a  limited staff  and  amount  of  recorded data,  but  can
quickly grow as new sites, strategies and measured trace gases are added.  Continuous observations alone
can quickly add tens of millions of measurements.  With more measurements, more staff are required for
quality assurance, data analysis and operational logistics.  As the value of the repository grows, increasing
numbers  of  end  users  may  request  access  to  the  data  for  comparisons  and  research.   Planning  for
projected scalability is a key element of any data management strategy so that quick, but controlled,
access is ensured even as the data and concurrent users grow.      

There are many commercial and open source RDBMSs available (Oracle, Sybase, SQL Server,
MySQL/MariaDB, PostgreSQL...) that, paired with sufficiently powerful server hardware, can scale to
meet the needs of the largest programs.  Instrumental to that ability however, is a thoughtfully architected
data model that allows for efficient storage and access.  This will be discussed further in later sections. 

The  CCGG  Group  operates  various  measurement  programs  including  both  discrete  and
continuous sample measurements from stationary and mobile sites.   Discrete air  sample collection in
flasks has been ongoing since 1967 with quasi-continuous measurements starting in the early 1970s.  The
original text file based data system eventually became overwhelmed and too cumbersome to use so a
DBMS and then a RDBMS was instituted in various stages through the 1990s and into the early 2000s.
Currently hosting close to 100 million discrete and continuous measurements along with data from other
GMD programs,  the  open  source  MariaDB database  running  on  CentOS  Linux  uses  approximately
400GB of storage space.  It is able to handle queries from dozens of interactive users in addition to web
queries.  



2.3 Accessibility 

Convenient, quick access to observational data is essential for internal users performing quality
assurance, operational logistics and analysis.   Users should be working from a central repository, not
copies that quickly become out of date.  These tasks, done using in-house and third party software, need
to directly  and indirectly  interact  with the  data  management  system in a  secure  and controlled way.
External users will also need access to exports of the data in a variety of formats, tailored to use and
experience.  A data management system needs to be accessible to all of these use cases by providing a
consistent, flexible interface that can be readily incorporated into new and existing analysis programs
while restricting access for editing purposes to authorized personnel.  

RDBMSs  are  generally  accessed  through  the  use  of  Structured  Query  Language  (SQL),  a
language designed by IBM Corporation [Halpin et al., 2001] for accessing and manipulating database
information.  SQL queries are very flexible, allowing datasets to be quickly combined and filtered in
numerous ways. Queries are submitted to the database through a client program that must first connect to
and then authenticate with the RDBMS server.  Most programming environments (Python, PHP, .NET,
Perl…) used to create web applications, graphical user interfaces (GUI) and command line programs
include, or have available, libraries for connecting, authenticating and querying to the various commercial
and open source RDBMS products available today.  This allows authorized computer programs to become
‘clients’ to the RDBMS server and use a consistent interface (SQL) to access and modify its data.  The
general availability of SQL access in commercial software and client programming environments means
that  in-house computer program developers have great flexibility in how to program applications for
different classes of users.

The  CCGG Group has  developed many  tools  over  the  years  to  analyze  and  work  with  our
measurement data including command line programs written in Perl,  graphical and plotting programs
written in Python, IDL, R and MATLAB and web applications written in PHP.  These programs support
automated and interactive processes to manage operational logistics, quality assurance, data analysis and
exports (FTP, ObsPacks…) to the community and wider public.  

The ability to view, plot and analyze data is widely available to internal users.  Custom computer
programs  have  been  developed  to  enable  users  to  quickly  access  and  review  any  of  the  trace  gas
measurements  done  by  our  different  measurement  programs.   This  allows  results  to  be  quickly
disseminated and incorporated into current modelling and other research projects.  It also plays a vital role
in quality control.   For example, in the CCGG aircraft  sampling program, elevated measurements of
certain trace gases like H1211, a halon compound used in fire extinguishers but not naturally occurring,
are used to flag suspected sampling system leaks of cabin air.  This gas is measured by the Halocarbons &
other Atmospheric Trace Species (HATS) Group, but is integrated into the central database and available
for all users.   Being able to quickly and accurately link results from multiple trace gases allows problems
to be detected promptly and potential issues to be tracked down.  

Custom software developed in-house can be difficult to program and requires dedicated staff, but
has the advantage that functionality is tailor made for the intended use and can be readily adapted as



needs change.  It also allows a measurement program to standardize methods and calculations among
different internal groups which helps to preserve the long term consistency of the data.

2.4 Recoverability

A sound and well  thought-out  backup strategy is  an  essential  part  of  any  data  management
system.  There are many points of failure for any computerized system.  A backup strategy must address
everything from how to correct hard drive corruption to recovering from a catastrophic building fire.  The
main decision an organization must make is what the level of recoverability should be or, put another
way, what is acceptable data loss?  

For instance, a backup strategy of taking a weekly snapshot implies that the loss of a week’s
worth of data is acceptable in the case of a catastrophic failure.  On the other end of the spectrum, High
Availability (HA) systems can be implemented for instant failover to replicated servers for near zero
downtime  and  data  loss.    The  costs  and  complexity  to  implement  the  backup  strategy  increase
proportionally as the acceptable data loss is reduced.  At a minimum, database backups should be run on a
scheduled basis with offsite storage of periodic snapshots to be able to restore operational data.     

  
The CCGG RDBMS is backed up daily to a network storage device, with 31 days of history.  The

storage device itself is copied to tapes with six months of recoverability and periodic off site storage,
allowing disaster  recovery  of  operational  data  to  various  points  in  time with minimal  data  loss.   In
addition, select processed data sets are archived annually at the World Data Centre for Greenhouse Gases
(WDCGG) and at the National Centers for Environmental Information (NCEI).

2.5 Traceability

Traceability,  as  it  applies  to  the  trace  gas  measurement  community,  requires  that  every
measurement must be traceable to primary standards through an unbroken chain of direct comparisons to
successively higher order standards.  By maintaining traceability, measurements done at different times,
locations or even programs can be compared.   It  also allows changes to the primary scale or to the
assigned  value  of  standard  tanks  in  the  scale  hierarchy  to  be  propagated  down  to  applicable
measurements.  

Changes  to  the  assigned  values  of  standards  used  by  a  measurement  program  should  be
anticipated and planned for so that affected raw instrument output can be reprocessed using the most
current values.  Instrument output data, whether stored in text files or a database, must be preserved and
in  a  form  that  allows  processing  logic  to  recalculate  mole  fractions  using  the  updated  standards
information.   This  should  be  as  automated  as  possible  so  that  changes  are  quickly  and  accurately
propagated.

In the CCGG Group,  raw instrument output  for  discrete measurements is  stored in  text  files
whose format has changed many times over the years as new instruments are added and processes change.
Computer programs written to process files have versioning logic that allows any of the historical formats



to be read.  This ensures that historical raw instrument response files can be reprocessed at any future
date.  All files store standard tank identification numbers so that reprocessing logic can retrieve current
assigned values from our centralized calibration database.  While not fully automated due to the nature
and complexity of calibration changes, the procedures and methodologies are well documented so that
reprocessed mole fractions  can  quickly  be  updated  in  the  database  and reflected in  all  analysis  and
plotting computer programs.  

3 Designing a database

Creating  a  relational  database  is  a  complex  project  that  requires  planning,  development  and
ongoing  maintenance.   Measurement  programs  with  limited  staff  may  want  to  consider  engaging
consultants  or  custom  software  developers  to  assist  in  designing  the  database  as  well  as  computer
programs to interact with it.  

For those with the staff and resources to pursue their own development, the following sections
provide some insights and guidelines for designing a database with a goal of optimizing storage, speed of
access and data integrity.  Practical examples of a hypothetical measurement program are used to illustrate
how to apply these goals to a relevant data set.  

These guidelines loosely describe the database currently in place in the CCGG RDBMS which
has evolved over many decades to meet changing requirements.  The experiences and pitfalls encountered
by CCGG developers in designing and adapting the data management system to available technology and
the particular nuances of a trace gas measurement program are reflected in the recommendations below.  

3.1 Data flow

A first step to designing a database system is to analyze the flow of data to determine what the
fundamental data entities or data objects are and how they relate to each other.  For example, in a CO 2

measurement  program based  on  discrete  air  samples,  the  flow of  data  may  start  at  the  moment  of
collection.  Information about the time and location must be recorded as well as equipment details such as
the flask ID and collection method.  Recorded meteorology and any anomalies that may affect the quality
of the measurement need to be related to the raw data.  After the sample is sent back to the measurement
lab, operational logistic systems will need to know when it’s checked-in and where it resides.  In the
NOAA GMD program, the flask will then begin a journey through one or more of 5 different labs for
analysis of  over 60 trace gas species.   Raw instrument output  during analysis will  be processed and
converted into mole fractions and isotopic ratios.  Analysis details like species measured, instrument used
and analysis time are recorded with the processed data.  Sampling and analysis tables are related to each
other via the primary key (discussed in section 3.2.2).  Quality assurance will likely occur in several steps,
first by automated processes, and then by one or more people using plotting and statistical programs to
identify  analytical  problems  and  statistical  outliers  that  should  be  designated  as  not  likely  to  be
representative  of  specified  conditions.   During  this  process,  measurement  results  of  several  related
species, possibly from different labs, will need to be available for review.  Once the measurement details
have been finalized, both internal and external users will analyze and use the results for comparisons, in
models, and for basic research.  



Other collection strategies will have slightly different data flow and therefore different design
requirements.   For example in a continuous in situ measurement system, the collection of air  isn’t a
discrete  event  whose  attributes  are  shared  with  many  trace  gas  measurements.   The  collection  and
measurement  are  done  at  the  same  time,  which  creates  a  similar  but  significantly  different  set  of
recordable attributes.   Aircraft  campaigns and other  mobile  measurement  systems may generate  both
continuous and discrete  measurements with the added complication of  needing to  record profile  and
changing location information.  

Only after the flow of data is thoroughly analyzed and the relationships between data entities
identified can the process of architecting the database structure begin.

3.2 Database Tables

Data in an RDBMS are stored in a series of data tables that can be related or ‘joined’ together to
create full data sets.  Actual disk storage details differ, but tables can logically be thought of as a matrix of
rows and columns, similar to a spreadsheet or a CSV file.  There are important differences however.  

A CSV file can be opened and edited by many programs and users, allowing great flexibility but
little control over how data are modified.  A column in the file can be labeled as a date, but there is no
guarantee that all values actually are dates.  And while the rows may all represent different records, there
is no mechanism in place to enforce that they are uniquely selectable.   

A database table, in contrast, is not directly accessible.  Viewing and manipulating data in a table
is strictly managed by the RDBMS, which follows rules laid out by the database designer.  Each column,
or field, is named and rigidly classified (typed) by the kind of data it will contain (date, time, integer,
string…).  Invalid values are disallowed by the RDBMS.  Rows in the table are comprised of records
identified  by  a  ‘primary  key’,  discussed  below,  which  ensures  they  are  all  uniquely  selectable.   By
managing access to tables, a RDBMS is able to control the contents to ensure consistency.

There is also a significant conceptual difference in how relational database tables are defined.
CSV files are generally stand alone data sets, often combining many different domains of data for users to
manipulate and analyze interactively.  They are structured for ease of use and portability.  They can be
used in complicated statistical and plotting programs like JMP and IDL or in simple text readers like VI or
NOTEPAD.  Relational database tables however, are rarely interacted with individually.  Their primary
purpose is to serve as a logical structure for storage and efficient access.  As part of an architected system,
a relational database table doesn’t need to be independently portable, or even human readable.  They are
structured and organized for storage efficiency, access efficiency and data integrity.

In general, relational database tables are architected to represent a single logical entity or data
object.   The columns  in  the  table  describe the  fundamental  attributes  of  that  individual  data  object.
Additional tables can hold information that relates to the data object in some way.  Individual records in
the  related  tables  can  be  linked  together  to  construct  a  complete  set.   How those  data  objects  and



subsequent tables are defined and related are very important for both performance and reducing data
inconsistencies.   There is much literature and theoretical analysis of relational database design that is
outside the scope of this paper, but a general understanding of the concept of database normalization is
very helpful to understanding how to create a sound database architecture.   

3.2.1 Database normalization

First described by E.F. Codd in the early 1970s and later refined in subsequent papers and books
by Codd and others, database normalization is a method of organizing data to reduce redundancy and
potential inconsistencies by structuring data tables in a logical and efficient manner.

For an example, assume a person was tasked with recording the site code, date, flask ID and
collection method for each of a program’s discrete samples.  They could create a simple table with all the
columns (Figure 2).

Site_code Datetime Flask_ID Method
MLO 2015-12-29 19:46:00 208-99 P
MLO 2015-12-22 19:41:00 2516-99 P
BRW 2016-01-04 19:12:00 83-99 S
BRW 2016-01-11 19:05:00 4007-99 P
...

Figure 2 - Sample events

What if in addition to the three letter site code, they also had to record the full site name?  That could
easily be added as another column (Figure 3).

Site_code Site_name Datetime Flask_ID Method
MLO Mauna Loa, Hawaii 2015-12-29 19:46:00 208-99 P
MLO Mauna Loa, Hawaii 2015-12-22 19:41:00 2516-99 P
BRW Barrow, Alaska 2016-01-04 19:12:00 83-99 S
BRW Barrow, Alaska 2016-01-11 19:05:00 4007-99 P
...

Figure 3 - Events table with both site_code and site_name columns

If a sample location was entered incorrectly, both the site_code and site_name columns would need to be
edited together and kept  in sync.   A small  possibility for an inconsistency is  introduced because the
site_code and site_name may not get updated together, leaving the possibility that a row could have a
site_code with incorrect name.  There is also a small amount of redundancy as the combination of site
code and site name are repeated but never change.  

Now consider if in addition to site_name, the person was asked to record the site’s offset from
utc, country, state/province and a short description that would change periodically with staffing changes.  

Site_code Site_name utc_offset Country State_prov Description Datetime Flask_ID Method



MLO Mauna  Loa,
Hawaii

-10 USA HI  Mauna  Loa
Observatory  is
located  on  the
Island  of  Hawaii
at  an elevation of
3397 m ...

2015-12-29
19:46:00

208-99 P

MLO Mauna  Loa,
Hawaii

-10 USA HI  Mauna  Loa
Observatory  is
located  on  the
Island  of  Hawaii
at  an elevation of
3397 m ...

2015-12-22
19:41:00

2516-99 P

BRW Barrow,
Alaska

-9 USA AK Barrow
Observatory,
established  in
1973,  is  located
near  sea  level  8
km  east  of
Barrow, Alaska...

2016-01-04
19:12:00

83-99 S

BRW Barrow,
Alaska

-9 USA AK Barrow
Observatory,
established  in
1973,  is  located
near  sea  level  8
km  east  of
Barrow, Alaska ...

2016-01-11
19:05:00

4007-99 P

...

Figure 4 - An un-normalized events table with extra site attributes data bolded

If these columns are added to the same table (Figure 4), several problems become apparent.  A
much  larger  chance  for  inconsistency  is  introduced  as  there  would  be  several  columns  (site_code,
site_name, utc_offset,  state_prov and country)  to  update  and keep synchronized if  the  site has to be
changed.  Changes to the site description would need to be replicated to every applicable row.  Storage
requirements would be significantly larger due to the repeated information.

Instead, the person would likely avoid the extra work and repetition by creating a second table
that just contained the site information, one row for each site.  When someone wanted to know the utc
offset or the current site description for an event, they could just look up the site code in this new master
site list and retrieve the data.  Updates to the site description would only need to occur once to apply to all
applicable rows. 

This, essentially, is the concept of normalization.  Logical data objects are separated into separate
data structures that can be linked together to recreate a full data set.  The problems of redundancy and
data inconsistencies are solved through design.  

While a person may intuitively understand the relationship between a sampling event’s site code
and how to look up further  details  in a master  site list,  a  relational  database needs this relationship
explicitly defined thru the use of primary and foreign keys, described below.

3.2.2 Primary keys and unique constraints

To continue the example as applied to database table architecture, the logical data objects are
separated into separate  tables,  one for sampling events  (Figure 5) and the other for  site information



(Figure 6).  Each row in the tables represents a single record and must be unique among all the other
records in the table.  

Site_code Datetime Flask_ID Method
MLO 2015-12-29 19:46:00 208-99 P
MLO 2015-12-22 19:41:00 2516-99 P
BRW 2016-01-04 19:12:00 83-99 S
BRW 2016-01-11 19:05:00 4007-99 P
...

Figure 5 - Events table

Site_code Site_name utc_offset Country State_prov Description
MLO Mauna  Loa,

Hawaii
-10 USA HI  Mauna Loa Observatory is located on the Island of Hawaii at

an elevation of 3397 m ...
BRW Barrow,

Alaska
-9 USA AK Barrow Observatory, established in 1973, is  located near sea

level 8 km east of Barrow, Alaska...
...

Figure 6 - Sites table

The set of attributes (columns) that uniquely identifies a record is referred to as the ‘primary key’
and is  designated at the time the table is  defined.   The database enforces a unique constraint  on the
primary key, such that it disallows insertions or modifications of records that would create a duplicate
primary key.  Because of its uniqueness, it can be used to reference specific records in the table or to join
related records when querying the database. 

For the site table, the site_code is an obvious primary key as it will be unique among all site
records.  In the events table, each record can be uniquely defined by the combinations of columns date
and flask_id since our data flow analysis dictates that there can not be 2 samples in the same flask from
the same date and time.  Note that it doesn’t actually matter if there technically could be duplicates, the
unique constraint being defined here is to enforce business rules (operational rules) about what is allowed
to be stored into the database.  There can be records with either the same date or with the same flask_id -
it  is  the  designated combination of  the  two fields  that  creates  a  unique  record.  This  is  known as  a
compound key or multi-column primary key.  

Because the primary key is  often used to  identify a  record,  either  in  direct  queries  or  when
referenced in related tables, many architects will designate a ‘surrogate’ primary key for convenience,
performance and other practical reasons.  For tables with multi-column primary keys, a surrogate key
makes queries clearer  and more concise.   The surrogate  key is  generally  an integer,  but  can be any
supported type.  Most RDBMSs can implement an ‘auto-incrementing’ function for integer keys so that
new rows are automatically assigned the next value without having to be specified in the insert command.
Be sure to verify that the range of the chosen data type is large enough to hold the expected number of
rows.  For instance, a MySQL SMALLINT can only hold 65,535 values while an unsigned INTEGER in
the same database has a range of 4,294,967,295 values.   

Event_num Date flask_ID Site Method
123 2015-12-29 19:46:00 21-69 MLO P

Figure 7 - Events table with surrogate key event_num and unique ‘primary’ key date flask_id



In  this  configuration,  the  event_num field  is  designated  primary  key  and  a  separate  unique
constraint is configured for Datetime and Flask_ID so that the business logic of a unique date and flask is
still enforced.  The record can be unambiguously identified by either the event_num or the combination of
date and flask_id equally.   The ability to enforce business rules and data integrity in the design and
implementation of the data model allows the database designer to ensure that stored data are always in a
consistent state no matter which program or user entered it.

Similarly, many database architects will designate a surrogate key for tables with character based
primary keys for several practical reasons.  An integer key is generally more efficient to store than a
character key with similar range.  The extra storage requirements can be significant on large tables.  With
an integer key, there is no question of whether case is significant and there is no ambiguity between
similar characters like capital I (i) versus lower case l (L) or with different character sets.  If a need arises
to change the user facing text (change a three letter site code or use a different character set), an integer
surrogate key and all its references won’t need to be updated.  Lastly, disassociating the data content
(site_code, method...) from the actual mechanism used to store and reference it gives future developers
flexibility when having to adapt the data model to new requirements. 

That said, using a text based primary key like site_code can save some complexity in queries
(section 4)  and is  easier  to read,  so the decision on whether to  use  a surrogate  key depends on the
preference of the database architect.

Site_num Site_code Site_name utc_offset Country State_prov Description

75 MLO Mauna  Loa,
Hawaii

-10 USA HI  Mauna  Loa  Observatory  is  located  on  the
Island of Hawaii at an elevation of 3397 m ...

15 BRW Barrow, Alaska -9 USA AK Barrow  Observatory,  established  in  1973,  is
located near  sea  level  8  km east  of  Barrow,
Alaska...

...

Figure 8 - Sites table with surrogate primary key site_num and unique constraint on site_code

3.2.3 Foreign keys and related tables

The ‘non-primary’ columns in the table record secondary attributes of this specific record.  These
include the site and collection method for each sample in our events example.  Each of these non-primary
columns needs to be analyzed to see where they fit in a relational model.  As a rule of thumb, any datum
not specific to an individual record should be in a related table.  Or put another way, if a piece of data is
an attribute of something other than the primary key, it should be in a related table.

We have already decided that the site’s extended data should be in a related table, but what about
the method?  For this question, a database architect needs to consider future potential requirements to
decide if there will ever be a time when someone wants to record something more about the collection
method than a single letter.  It seems likely that a description might be useful to record.  Since, like the



site description, a method description is an attribute of the method not a particular  event,  these data
should be in a related table.

Method_num Method_code Method_description
8 P Sample  collected  using  a  portable,  battery

powered pumping unit.

Figure 9 - Methods table with a surrogate primary key method_num and unique constraint on method_code

To link the sites and methods tables to the events table, the related tables primary keys can be
used as a ‘foreign key’ in the events table, which provides an explicit link between the tables and a means
to join an event with it’s extended site data (utc offset, site description…) and method data (method_code,
description) (Figure 10).  Most RDBMSs provide foreign key constraints to enforce relational integrity
between referenced tables.  For example to ensure that a foreign key (site_num) always points to an actual
row in the database and wasn’t mis-entered,  a constraint,  a rule that is imposed in the design of the
database, would prevent adding an event row without referencing an existing site_code and conversely
prevent deleting a site row if any linked event records exist.  

 

Event_num Date flask_ID Site_num Method_num
123 2015-12-29 19:46:00 21-69 75 8

Figure 10 - Sites and Methods tables linked to Events table thru foreign keys

3.2.4 Different relation types

 
To continue the example, once a sample is returned to the lab and analyzed, one or more trace gas

measurement  results  will  need  to  be  recorded  for  each  sample  event.   This  requires  a  similar  but
conceptually different relation than the sites and methods relations used above.  Those tables are referred
to as ‘lookup’ or ‘dictionary’ tables, meaning that they contain a list of available choices for a particular
field, e.g. - each sample event can only be attached to one of the defined sites and use only one of the
defined collection methods.   

To record the one or more measurement results that belong to a given sample event, we instead
create a ‘master-detail’ or ‘parent-child’ relation.  Functionally, they can be structured in the same way as

Site_num Site_code Site_name utc_offset Country State_prov Description

75 MLO Mauna Loa, Hawaii -10 USA HI Mauna Loa...

Method_num Method_code Method_description
8 P Sample  collected  using  a  portable,

battery powered pumping unit.



a lookup table, using a foreign key to join records, but in this case the child rows are considered to
‘belong’ to the parent row.  A measurements table might look like this:

event_nu
m

species value unc flag ins
t

meas_date

123 co2 401.650 -
999.99

... L8 2016-01-14 16:13:00

123 ch4 1848.66
0

1.1000 ... H6 2016-01-14 15:21:00

...

Figure 11 - Measurements table with event_num foreign key

In this arrangement, the events table is referred to as the ‘parent’ table and the measurements
table is referred to as the ‘child’ table because one or more measurements belong to each sample.  The
measurements  event_num  column  is  the  ‘foreign  key’ that  links  this  measurement  to  its  sample
information.   Queries retrieving details  of  this  event  and measurements can join the tables using the
foreign key (as described in section 4) to view or work with full details of the event and measurements.  

The distinction between parent-child and lookup table relations, while logically very similar, is
mentioned because some RDBMS implementations allow a designer to treat them differently, which may
have  implications  on  how  data  modifications  are  handled.   For  instance,  in  some  implementations
deleting a member of a lookup table will be prevented if it is referred to by another table, but deleting a
parent row can be configured to cause all of it’s dependent child rows to be deleted (cascading delete).
The  chosen  RDBMS  documentation  should  be  consulted  so  that  any  implementation  details  are
thoroughly understood.

3.2.5 Completing the example

To  complete  the  normalization  of  this  example,  each  of  the  ‘non-primary’ columns  in  the
measurements  table  need  to  be  analyzed  to  see  where  they  fit  in  a  relational  model.   Species  and
instrument are candidates for relational tables because there will likely be attributes of each that we wish
to record (Figure 12 and Figure 13).

species_nu
m

abb
r

name unit

1 co2 Carbon Dioxide umol mol-1

2 ch4 Methane nmol mol-1
...

Figure 12 - Species table

inst_num name manufacturer model

17 L8 Licor 7000

10 H6 HP 6890
...

Figure 13 - Instrument table



And finally, we can use these related tables in the measurements table (Figure 14).  

data_nu
m

event_num species_nu
m

value unc fla
g

inst_num meas_date

456 123 1 401.650 -999.99 ... 17 2016-01-14 16:13:00

457 123 2 1848.66
0

1.1000 ... 8 2016-01-14 15:21:00

...

Figure 14 - Normalized measurements table with foreign keys to the events, species and instruments tables

Conversely, flag, uncertainty and value are attributes of this unique measurement and therefore
are recorded directly.  The decision on how far to take this process, i.e. how many relation tables to create,
is not always clear.  Convenience in construction of queries is a factor as is unknown future requirements
and the anticipated importance of the data attribute.  For example, a site’s country could be recorded as a
text string or in a lookup table.  Systems that will need to use the country for shipping information would
likely want to record it in a lookup table to prevent entry errors.  Systems recording it for informational
display purposes may decide a text string is more flexible and can better handle sites without an obvious
country like Antarctica or ship based measurements.

3.2.5 Indexing

Indexes are internal structures that provide metadata about the content and storage of a table to
the database so that it can quickly find requested information. Proper indexing of data tables is very
important to how efficient and fast a database can respond to a query.   While the details of how they are
implemented and used by a RDBMS are beyond the scope of this paper, the general concepts will be
extremely helpful to understand when designing and optimizing a database.  

Consider  as  an  example,  a  paper  phone  book that  contains  an alphabetized listing of  phone
customers in a city.  For each person, the address and phone number are listed.  To find the number for
John Mund, a user would open the book at the middle, thumb back or forward to the Ms, then to MUs and
finally to the page with the listing.  In just a few steps, any name in the book can be looked up and the
address and phone number retrieved.  

Now consider if instead of finding a number for a name, a user wants to know which person
belongs to a particular number.  The physical layout of the book is no longer helpful and the user would
have no choice but to scan through each page until the number is found.

These two scenarios represent the difference between what’s called an indexed search and an un-
indexed search, the latter taking many orders of magnitude more work to resolve.  The way a database
would optimize the second case is to create an ordered list of every phone number in the book along with
the page it occurs on.  A user could quickly scan through the ordered list to the desired phone number and
use the accompanying page number to find the right page in the phone book.  They would still need to
scan the page to find the number, but the total number of steps is now similar to doing a lookup by name.  



In  our  discrete  measurement  example  above,  it  might  be  common  for  users  to  retrieve
measurements from a specific site and date range.  An index created on the events site_num and date
columns would likely dramatically speed up this type of query.   A database designer should consult the
RDBMS manual for information on how to use built in tools to analyze query performance to see where
indexes might be appropriate.  Because indexes impose overhead and additional storage requirements,
they should only be thoughtfully added after careful analysis. 

 

3.3 Triggers and constraints

Database triggers and constraints are implemented differently depending on the specific RDBMS
being used, but have a similar logical purpose of allowing the database designer to ensure that all data
modifications (inserts, updates and deletes) are done in a controlled manner that enforces data integrity
and  consistency.   For  example,  foreign  key  constraints,  mentioned  in  previous  sections,  prevent
occurrences of ‘orphaned’ child rows that have invalid references to the parent table.  Other constraints
can enforce a minimum set of required fields for a row.  Triggers that are automatically run on “insert”
and  “update”  operations  can  automate  the  creation  of  ancillary  data  or  be  used  to  create  a  data
modification  log,  recording  before  and after  snapshots  of  all  user  edits.   Because  this  logic  can  be
embedded at such a low level in the data structure, meaning that it is run no matter which user or program
is modifying data, it is a powerful tool for controlling how the data are managed.

3.4 Views

A normalized relational table layout is very clean, efficient and robust, but is not always very
intuitive  or accessible for  users  accessing the data  without  a detailed knowledge of  the  design.   It’s
generally advisable to funnel user access through client programs that can provide a friendlier interface
and abstract away the details of the RDBMS.  For users or developers that want to access the database
directly through SQL queries, most RDBMSs provide a construct called a view, which provides the ability
to hide some of the implementation details and present a consistent interface to relevant data.  A view is a
dynamic query that can, for example, join all the tables in the previous flask measurement example and
provide an output similar to a flat file.  Users can query the view as if it were the real table and the
RDBMS does the work of combining tables behind the scenes to provide the results.  

Generally created by the database manager, they can be used as a user convenience, performing
common joins and output formatting in the background, or as an abstraction layer allowing changes to the
underlying data structure without having to modify the way clients access the data. 

4 Data query and manipulation



There are many courses, books and papers describing in detail how to access and manipulate a
database using Structured Query Language (SQL).  For the purposes of this paper, we will only give a
short overview with some practical examples.  

4.1 Access restrictions

While advanced users may have the ability and need to directly query the database using SQL to
retrieve  data,  data  modifications  (inserts,  updates  and  deletes)  should  be  restricted  to  database
administrators and developers as the commands can be very powerful and potentially misused.  This is
easily accomplished in most RDBMS implementations through the use of user permissions.  General
users can be granted ‘select’ (read) permissions and disallowed from issuing modification commands.
Administrators,  developers and specific computer  programs can be granted additional  permissions as
appropriate, so that the ability to modify data is controlled and restricted.  Access permissions to vital data
should  play  an  important  part  in  any  organization’s  overall  security  strategy.   See  your  vendor
documentation for details.

4.2 Transactions

Most  RDBMS  software  provides  support  for  transactional  control  of  data  modification
commands.  Transactions allow the caller,  whoever is modifying the data, to wrap one or more SQL
statements into a single logical group such that either all succeed and are saved to the database or if one
fails for some sort of error condition, all fail and none are saved to the database.  This atomicity enforces
a consistent  state among the group of  statements and allows the caller  to gracefully fail  in  an error
condition without having to worry about whether some operations succeeded or not.

Transactional control is very difficult to add to an existing database and so if desired, should be
implemented at a very early stage of the design process.  The CCGG database, having grown and evolved
organically over many years, does not make use of transactions.  Instead, a set of automated consistency
checks are run on the database to look for potential issues and notify database administrators.

4.3 Inserting

Automated scripts processing raw analysis data as well as programs allowing users to enter data
will  need to  insert  into various  tables.   There  are  several  variations  and exact  syntax differs  among
database implementations, but in general an insert statement specifies the table and columns that will be
inserted and then the values to use for those columns.

insert events(event_num,date,flask_id,site_num,method_num) 
values (123,’2015-12-29 19:46:00’,26,75,8)

Other variations allow inserting multiple rows at once or inserting data selected from another
table.  



4.4 Updating

Corrections, completions and general edits to the data are inevitable.  The update command is
similar to the insert command in that it specifies the target table and columns to modify, but the structure
is a little different.

update events set date=’2015-12-29 19:45:00’ where event_num=123

Here the table is specified and then one or more columns along with their new value.  The ‘where’
clause limits the update to the row with primary key of 123.  

A critical function of a measurement program is being able to quickly and accurately propagate
changes in calibration scales and assigned values for standards to the measurement data table.   The
update statement can be used to update particular data rows through reprocessing of raw data or to apply a
correction en mass to whole sets of rows by using a different ‘where’ filter that selects rows based on
species and date, for instance.  These types of statements can be dangerous however as it is easy to
inadvertently update unintended rows.   The RDBMS documentation should be carefully consulted to
ensure a thorough understanding of the command’s abilities.

4.5 Selecting

Retrieving data from a database is done through a select command.  There are many variations,
some implementation specific, but the general command is to select a list of columns from one or more
joined tables meeting a set of conditions.  For instance, a simple query to select all sample dates for
site_num 75 looks like this:

select date from events where site_num=75

To display and filter by the site’s three letter code requires joining to the sites table.  The ‘join’
clause combines related results from two tables based on the condition in the ‘on’ clause.  

select sites.site_code, events.date
from events join sites on events.site_num=sites.site_num
where sites.site_code=’MLO’

Here, the events table is joined to corresponding sites rows using the ‘on’ clause to specify which
columns relate them.  During the query processing, a virtual table is created by combining each event row
with it’s corresponding sites row using the site_num key in each.  The ‘where’ clause is used to filter the
results to the target rows (site.site_code is MLO).  Only the site_code and event date are returned.  We
specify the full table names to distinguish between ambiguous column names (site_num is a column in
both tables).



Both ‘on’ and ‘where’ use boolean logic to combine multiple clauses.  To limit the query to just
MLO events using collection method_num 8, we can use the ‘and’ operator.
 

select sites.code, events.date
from events join sites on events.site_num=sites.site_num
where sites.code=’MLO’ and events.method_num=8

An ‘or’ operator can be included using parentheses to designate the order of operations.

select sites.code, events.date
from events join sites on events.site_num=sites.site_num
where sites.code=’MLO’ and (method_num=8 or method_num=9)

This limits the result rows to MLO events that are either method_num 8 or 9.

Multiple tables can be joined to select any subset of available columns.  Aliases or abbreviations
for column output headers and query tables (created using ‘as’ command) can be used to keep the code
clear when many tables are joined and need to be referred to.  Here we select the site name, date, species
and measurement value for all samples taken in 2015.

select s.name, 
e.date as 'collection_date', 
sp.abbr as 'species', 
m.value

from events as e 
    join measurements as m on e.event_num=m.event_num
    join sites as s on e.site_num=s.site_num
    join species as sp on m.species_num=sp.species_num
where e.date>='2015-01-01' 

and e.date<'2016-01-01' 

Most RDBMS implementations have datetime data type which allows for the full date and time to
be stored in a single field for use in comparisons and arbitrarily complex date arithmetic.  For example to
find the samples taken at MLO in 2015 between 0900 and 1400 local time we could use something like
this (MySQL specific) syntax:



select s.code,
e.date

from events e join sites s on e.site_num=s.site_num
where s.code=’MLO’ 

and e.date>='2015-01-01' 
and e.date<'2016-01-01'

    and time(date_add(e.date, interval s.utc_offset hour)) 
between '09:00:00' and'14:00:00'

  

The ‘group by’ operator allows for aggregate functions like count, average, min & max to be
quickly and easily calculated.  Adding month and the ‘count(*)’ keyword to the selected columns with a
‘group by’ directive specifying how to aggregate gives monthly counts by site of the above.

select s.code,
month(e.date) as month_num,
count(*)

from events e join sites s on e.site_num=s.site_num
where s.code=’MLO’ 

and e.date>='2015-01-01' and e.date<'2016-01-01'
    and time(date_add(e.date, interval s.utc_offset hour)) 

between '09:00:00' and'14:00:00'
group by s.code,

month(e.date)  

These examples are by no means an exhaustive instruction in how to query a relational database
using SQL.   They are  meant  to  show a range  of  possibilities  of  what  type of  queries  are  possible.
Interested users should consult the RDBMS documentation for specific details of available syntax and
capabilities.

5. Conclusion

A measurement program’s data are one of its  most  important  assets.   A comprehensive,  well
planned data management strategy is essential to a program’s long term success. A strategy must help
ensure  the  integrity  of  the  data  while  providing  quick  access.   A well  designed  relational  database
management system can serve as the core data repository, abstracting away the storage details to provide
a managed interface for programs and users to access data.  Policies, procedures and user programs must
also be developed to ensure that data entry is validated and done in a controlled manner.  Measurements
must  be traceable  to the  scale  and appropriate working standards  so that  calibration changes can be
applied quickly and accurately.  Finally, all aspects of the system from architectural design decisions to
detailed  process  instructions  should  be  well  documented  to  ensure  that  data  remains  useable  and
accountable over the long term.



The data management system in use by the CCGG Group has evolved over several decades to
meet needs of a growing program.  We continue to adapt and redesign it to meet changing requirements.
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