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1 TM5

The global atmospheric tracer transport model TM5 [Krol et al., 2005] simulates the spa-

tiotemporal distribution of a tracer in the atmosphere, for a given set of surface emissions
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and atmospheric sinks. We run it at 6◦ × 4◦ (longitude × latitude) horizontal resolution

and 25 vertical hybrid sigma pressure levels from the surface to the top of the atmosphere.

The meteorological fields for this offline model are taken from the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis [Dee et al., 2011].

Our version of the model uses ERA-Interim archived convective mass fluxes.

In a TM5-Meteorology simulation, an initial spin up of 12 years was to bring the at-

mospheric mole fractions and emissions of CH4 in equilibrium. Tropospheric oxidation of

methane is calculated using the monthly distribution of OH from Spivakovsky et al. [2000],

adjusted by a single scaling factor of 0.92, derived from inverse modeling of methyl chloro-

form in TM5. The same seasonally varying OH field is repeated every year. The modeled

vertical profiles were sampled at locations of GOSAT soundings and converted into total

columns using GOSAT averaging kernels [Monteil et al., 2013].

The meteorology simulation of the δ13C-CH4 version of TM5 [Monteil et al., 2011] was

given a spin up of 30 years to bring atmospheric δ13C-CH4 in the model in equilibrium with

δ13C-CH4 signature of emissions.

2 Inverse modeling

The TM5-4DVAR inverse modeling system was used to estimate surface CH4 emissions

measurements of the dry air mole fraction of methane in flask samples from the surface

network as well as satellite retrievals of its column average mole fraction. It comprises of

TM5 coupled to a variational data assimilation system (4DVAR, Meirink et al. [2008]). CH4

emissions are optimized as a single category representing the sum of all source and sink

processes, for each surface grid box of TM5 and each month of simulation. For anthropogenic

emissions, we use the 4.2FT2010 version of EDGAR (European Commission, Joint Research

Centre (JRC)/Netherlands Environmental Assessment Agency). A priori emissions from

other processes were used as described in Houweling et al. [2014]. The covariance matrix of

the state vector of surface emissions is constructed assuming a relative emission uncertainty

of 50% per grid box per month for the ‘total’ CH4 category. The emissions are assumed

to be correlated temporally using an exponential function with a correlation length of 3

months, and spatially using a Gaussian function with a decorrelation length scale of 500

km.
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3 Uncertainty estimation

In Figures 1 and 2 of the main text, the shaded regions represent ±1σ uncertainty of the

respective time series. These uncertainties were calculated using the Monte-Carlo method

with 100 simulations. In Figure 1, the retrievals errors, provided by RemoteC, were as-

signed as uncertainty of individual GOSAT XCH4 measurements. For model output, model

representation errors were used. In Figure 2, the emission uncertainties are the posterior

uncertainties calculated by TM5-4DVAR [Basu et al., 2013]. δ13C-CH4 measurements were

assigned an uncertainty of 0.02 h. Similar procedures were used in SM Figure 1 and 5.
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4 Surface measurements of CH4

Figure 1: Same as Figure 1 in the main text, but for surface flask-air measurements of CH4

from the NOAA and CSIRO networks.

Surface measurements of CH4 are shown in Figure 1. There are considerable differences

between the zonal mean CH4 variations derived from these data and the GOSAT FP re-

trievals (see Figure 1 of main text). Unlike GOSAT FP (∆XCH4
TRO = 2.42 ppb), there is no

enhancement in TRO in surface data (∆CH4
TRO = −0.29 ppb) during LN11. Enhancement in

SET is also lower (surface ∆CH4
SET = 1.52 ppb vs. GOSAT FP ∆XCH4

SET = 5.62 ppb). Also, there

is a significant decrease in TRO due to meteorology (∆CH4
TRO = −2.62 ppb) during LN11,
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which is not seen in GOSAT FP.

Figure 2: Coverage of GOSAT RemoteC full-physics XCH4 and the NOAA and CSIRO

surface air sampling sites (black dots) that were used. Only surface sites with continuous

coverage between 2009-2015 and at least monthly temporal resolution were used. This map

was generated using python v2.7 with matplotlib-basemap library [Hunter , 2007]

The differences in between the interannual variation in surface measurements and satel-

lite retrievals likely reflect differences in spatial coverage of the two datasets. GOSAT FP

has a more even spatial coverage than the surface networks (see Figure 2). A larger num-

ber of tropical surface measurements are taken in the northern hemisphere compared with

southern hemisphere, which can bias the zonal average. Also, the signal from land takes

quite a long transport path—including upward transport by convection, etc.—before reach-

ing a marine site in the Tropics, increasing the chance of transport variations modifying

the signal.

After subtracting the TM5-Meteorology, influences of sampling and transport are re-

moved from the two measurement sets and their residual anomalies are in better agreement

(surface ∆CH4
TRO = 2.34 ppb vs. GOSAT ∆XCH4

TRO = 2.04ppb). This is consistent with the pos-

terior emissions from the inversion assimilating only surface measurements being similar to

those obtained when assimilating GOSAT FP and surface measurements (see Figure 3).
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Figure 3: Detrended and smoothened TM5-4DVAR CH4 emissions estimated after assimi-

lating GOSAT FP and/or surface data.

5 Biomass burning emissions

We use the GFED4s inventory to account for CH4 emission from biomass burning (BB).

GFED uses remotely sensed fire activity and vegetation productivity to derive gridded

monthly burned area and resulting BB emissions [Van Der Werf et al., 2010]. The variability

of BB emissions is shown in Figure 4. It do not suggest that biomass burning contributed

to the increased emissions during the La Nina. It is smaller (1σ =±2 TgCH4 yr−1 ) than

the variability of optimized total CH4 emissions (see SM figure 4). Bousquet et al. [2006]

found that BB-related variations generally contributes 15% to the total emission anomalies.

High BB emissions are observed in mid-2012 after the La Niña. This might result from the

building up of biomass fuel during the preceding La Niña phases with anomalously wet

condition in regions like Australia [Detmers et al., 2015].
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Figure 4: Detrended and smoothened biomass burning CH4 emissions derived from GFED4s.

6 Interannual variability of the CH4 sink

To investigate the possible influence of variations in the OH sink on CH4, we compare

the optimized CH4 emissions from LMDz-PYVAR-SACS [Locatelli et al., 2015; Chevallier

et al., 2005; Hourdin et al., 2006] inversion with TM5-4DVAR inversion (See Figure 5).

The prior emissions used in these inversions do not account for any interannual variability.

LMDz-PYVAR-SACS has annually repeating prior emissions for all categories. The prior

emissions of TM5-4DVAR also have no inter annual variability except for biomass burning

emissions that are taken from GFED4s. This does not affect our final analysis as GFED4s

CH4 emissions are subtracted from the posterior beforehand.

In LMDz-PYVAR-SACS, OH fields were optimized using methyl chloroform (MCF)

measurements. These results should be treated with caution as

1. The MCF-based OH optimization becomes increasingly uncertain with MCF levels

dropping to only a few ppt in recent years.

2. It is difficult to determine the correct relative uncertainties of CH4 and MCF, which

introduces a temporally varying weight of the MCF measurements on the solution of

the coupled inversion system.

3. We make a comparison between different inversion systems. Doing so complicates

the comparison, especially for the absolute optimized emissions as different inversion
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Figure 5: Results of LMDz-PYVAR-SACS inversion. a) Detrended and smoothened pos-

terior CH4 emissions with ±1σ uncertanities. b) Comparison of the LMDz-PYVAR-SACS

and TM5-4DVAR derived µemission (mean during the three ENSO phases).

systems may give a wide range of estimates depending on their setup and boundary

conditions. However, inversion-optimized temporal emission variations are known to

be less sensitive to differences in inversion setup than the mean state.

In addition, recent studies have pointed out that atmospheric OH is well buffered against

changes in its driving parameters [Lelieveld et al., 2016]. The δ13C-CH4 influence of a 3

TgCH4 yr−1 enhanced sink will only be 0.005 h, which is within the error margins of the

δ13C-CH4 anomalies. If the whole anomaly was caused by OH this would lead to an isotopic

effect that was less than observed, suggesting the observed anomaly is driven by changes

in the sources rather than the sinks.

7 Transport impact on δ13C-CH4

Figure 2 in the main text shows the XCH4 variability due to variability in atmospheric

transport. Meteorological variability can influence δ13C-CH4 due to the isotopic fractiona-
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Figure 6: Detrended and smoothened δ13C-CH4 at NOAA air sampling sites from a TM5-

Meteorology simulation.

tion of the OH sink, changes in the strength of inter-hemispheric exchange, etc. Figure 6

shows the simulated δ13C-CH4 variability in response to variations in transport. Overall,

they are an order of magnitude less than the variability in the δ13C-CH4 measurements.

8 Process-based wetland models

Process-based wetland models estimate CH4 emissions from natural wetlands using infor-

mation about precipitation, temperature, biomass availability, etc. We analyzed the CH4

emission output from two such models: LPJ-wsl [Hodson et al., 2011; Zhang et al., 2016] and

CLM4.5 (referred as CLM from here on) [Riley et al., 2011; Xu et al., 2016]. These models

show a weaker enhancement of CH4 emissions during LN11 than the TM5-4DVAR inversion

(See Figure 7). A poor correlation is seen between these emissions and precipitation anoma-

lies. This happens despite general agreement between the inundated area calculated by the

hydrological schemes of these bottom-up models and SWAMPS (Surface WAter Microwave

Product Series). As shown in the main text (see Figure 3) the inundated area in SWAMPS

correlates well with the inversion derived emission anomalies in TRO.

Two mechanisms, that are implemented in the process-based wetland models, might

explain the disagreement between inundated area and modeled CH4 emissions:
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1. CH4 emission is directly related to ecosystem respiration, which increases with increas-

ing temperature. During LA11 the temperature anomaly in TRO was slightly negative

(µtemperature
TRO = −0.05◦C), and hence, it will decrease the strength of inundation-driven

positive CH4 emission anomaly.

2. The relation between extent of inundated area and CH4 emission is complex. In gen-

eral, wetland CH4 emission increases with increase in inundated area. However, the

reverse can also happen if the increase in precipitation causes a higher water table

depth, which will increase the chances of CH4 getting oxidized before reaching the

atmosphere.

Higher CH4 emissions are observed during LN11 in CLM (µemission
TRO = 2.38 TgCH4 yr−1 )

than in LPJ-wsl (µemission
TRO = 1.54 TgCH4 yr−1 ). This might be as CLM (≈ 250 TgCH4 yr−1

) has a higher annual global emission than LPJ-wsl (≈ 170 TgCH4 yr−1 ). Bohn et al. [2015]

highlighted the large uncertainties in present wetland models. They could be analyzed in

further detail using our inversion estimates.

9 Other retrieval/inversion methods

An important source of systematic error in satellite retrievals is the scattering of light by

aerosols and thin cirrus clouds along the measured light path. The full-physics (FP, Butz

et al. [2010]) and the proxy [Frankenberg et al., 2005] retrieval methods have been developed

in the past to account for such atmospheric scattering. Additionally, the so-called ratio

method assimilates Xratio (XCH4:XCO2) directly to optimize the surface fluxes of CH4 and

CO2 [Fraser et al., 2014; Pandey et al., 2015, 2016]. Hence, it avoids the errors introduced

in translating retrieved Xratio to XCH4 using modeled XCO2 (XCOmodel
2 ).

The proxy and ratio method generally yield twice as many valid CH4 retrievals as FP,

because the latter requires stricter cloud filtering criteria. In this study, we still use FP

retrievals to avoid potential correlations between the inter-annual variations of CH4 and

CO2 in response to ENSO. The proxy retrieval method might erroneously attribute an CO2

anomaly, that is not captured in XCOmodel
2 , to XCH4. Figure 8 illustrates that this is indeed

what happens. The ratio inversion method does not depend on the XCOmodel
2 , however, it

can still wrongly assign a CO2 anomaly to CH4 emissions to fit the Xratio in the atmosphere
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Figure 7: Detrended and smoothened CH4 emissions and total inundated area in the Tropics

estimated by wetland models and SWAMPS.
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Figure 8: The impact of XCOmodel
2 on CH4 proxy retrievals. There is high correlation (R)

between proxy − FP XCH4, and XCOmodel
2 − FP XCO2 (R values: TRO = 0.41, NET =

0.90, SET = 0.92, Australia = 0.97) indicating that an important fraction of the variability

in proxy XCH4 might be wrongly attributed CO2 variability.

depending on the relative uncertainty assigned to the a priori CO2 and CH4 fluxes.

Figure 9 shows CH4 emissions derived for TRO with the different inversion methods.

Overall, the variabilities of the emissions are in agreement. During LN11, the ratio (µemission
TRO

=7.03 TgCH4 yr−1 ) and proxy (µemission
TRO =9.54 TgCH4 yr−1 ) methods estimate a larger posi-

tive anomaly than FP inversion. During LN11, there was a negative CO2 anomaly globally,

driven by increased vegetation growth in semi-arid regions of the Southern Hemisphere

notably Australia [Detmers et al., 2015]. XCOmodel
2 and the ratio method optimized CO2

emissions do not properly account for this and hence, cause an incorrect attribution to CH4.

Therefore, the ratio and proxy methods find larger anomalies than the FP inversion. The

opposite is seen during EN10 and after LN12.
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Figure 9: Detrended and smoothened CH4 emission from the ratio inversion and inver-

sions assimilating proxy and FP CH4 retrievals. All these inversions also assimilate surface

observations.
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9.1 Climate Variations in the Tropics

Figure 10: Detrended and smoothened monthly precipitation and temperature times series

of the Tropics from CRU-TS v3.23. The vertical green spans represent La Niña episodes.
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9.2 Correlation analysis

Figure 11: Pearson product-moment correlation (R) between monthly anomalies of TM5-

4DVAR CH4 emissions, derived by assimilating FP XCH4, and anomalies of temperature,

precipitation and inundated area.
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