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This study quantitatively estimates the spatial distribution of
anthropogenic methane sources in the United States by combining
comprehensive atmospheric methane observations, extensive
spatial datasets, and a high-resolution atmospheric transport
model. Results show that current inventories from the US Envi-
ronmental Protection Agency (EPA) and the Emissions Database
for Global Atmospheric Research underestimate methane emis-
sions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our
study indicates that emissions due to ruminants and manure are
up to twice the magnitude of existing inventories. In addition, the
discrepancy in methane source estimates is particularly pro-
nounced in the south-central United States, where we find total
emissions are ∼2.7 times greater than in most inventories and
account for 24 ± 3% of national emissions. The spatial patterns
of our emission fluxes and observed methane–propane correla-
tions indicate that fossil fuel extraction and refining are major
contributors (45 ± 13%) in the south-central United States. This
result suggests that regional methane emissions due to fossil fuel
extraction and processing could be 4.9 ± 2.6 times larger than in
EDGAR, the most comprehensive global methane inventory. These
results cast doubt on the US EPA’s recent decision to downscale its
estimate of national natural gas emissions by 25–30%. Overall, we
conclude that methane emissions associated with both the animal
husbandry and fossil fuel industries have larger greenhouse gas
impacts than indicated by existing inventories.
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Methane (CH4) is the second most important anthropogenic
greenhouse gas, with approximately one third the total

radiative forcing of carbon dioxide (1). CH4 also enhances the
formation of surface ozone in populated areas, and thus
higher global concentrations of CH4 may significantly in-
crease ground-level ozone in the Northern Hemisphere (2).
Furthermore, methane affects the ability of the atmosphere to
oxidize other pollutants and plays a role in water formation
within the stratosphere (3).
Atmospheric concentrations of CH4 [∼1,800 parts per billion

(ppb)] are currently much higher than preindustrial levels
(∼680–715 ppb) (1, 4). The global atmospheric burden started to
rise rapidly in the 18th century and paused in the 1990s. Methane
levels began to increase again more recently, potentially from
a combination of increased anthropogenic and/or tropical wet-
land emissions (5–7). Debate continues, however, over the cau-
ses behind these recent trends (7, 8).
Anthropogenic emissions account for 50–65% of the global

CH4 budget of ∼395–427 teragrams of carbon per year (TgC·y)−1

(526–569 Tg CH4) (7, 9). The US Environmental Protection
Agency (EPA) estimates the principal anthropogenic sources in
the United States to be (in order of importance) (i) livestock
(enteric fermentation and manure management), (ii) natural gas

production and distribution, (iii) landfills, and (iv) coal mining
(10). EPA assesses human-associated emissions in the United
States in 2008 at 22.1 TgC, roughly 5% of global emissions (10).
The amount of anthropogenic CH4 emissions in the US and

attributions by sector and region are controversial (Fig. 1).
Bottom-up inventories from US EPA and the Emissions Data-
base for Global Atmospheric Research (EDGAR) give totals
ranging from 19.6 to 30 TgC·y−1 (10, 11). The most recent EPA
and EDGAR inventories report lower US anthropogenic emis-
sions compared with previous versions (decreased by 10% and
35%, respectively) (10, 12); this change primarily reflects lower,
revised emissions estimates from natural gas and coal production
Fig. S1. However, recent analysis of CH4 data from aircraft esti-
mates a higher budget of 32.4 ± 4.5 TgC·y−1 for 2004 (13). Fur-
thermore, atmospheric observations indicate higher emissions in
natural gas production areas (14–16); a steady 20-y increase in the
number of US wells and newly-adopted horizontal drilling techni-
ques may have further increased emissions in these regions (17, 18).
These disparities among bottom-up and top-down studies

suggest much greater uncertainty in emissions than typically
reported. For example, EPA cites an uncertainty of only ±13%
for the for United States (10). Independent assessments of bot-
tom-up inventories give error ranges of 50–100% (19, 20), and
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Successful regulation of greenhouse gas emissions requires
knowledge of current methane emission sources. Existing state
regulations in California and Massachusetts require ∼15%
greenhouse gas emissions reductions from current levels by
2020. However, government estimates for total US methane
emissions may be biased by 50%, and estimates of individual
source sectors are even more uncertain. This study uses at-
mospheric methane observations to reduce this level of un-
certainty. We find greenhouse gas emissions from agriculture
and fossil fuel extraction and processing (i.e., oil and/or natural
gas) are likely a factor of two or greater than cited in existing
studies. Effective national and state greenhouse gas reduction
strategies may be difficult to develop without appropriate
estimates of methane emissions from these source sectors.
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values from Kort et al. are 47 ± 20% higher than EPA (13).
Assessments of CH4 sources to inform policy (e.g., regulating
emissions or managing energy resources) require more accurate,
verified estimates for the United States.
This study estimates anthropogenic CH4 emissions over the

United States for 2007 and 2008 using comprehensive CH4
observations at the surface, on telecommunications towers,
and from aircraft, combined with an atmospheric transport
model and a geostatistical inverse modeling (GIM) framework.
We use auxiliary spatial data (e.g., on population density and
economic activity) and leverage concurrent measurements of
alkanes to help attribute emissions to specific economic sectors.
The work provides spatially resolved CH4 emissions estimates
and associated uncertainties, as well as information by source
sector, both previously unavailable.

Model and Observation Framework
We use the Stochastic Time-Inverted Lagrangian Transport model
(STILT) to calculate the transport of CH4 from emission points at
the ground to measurement locations in the atmosphere (21).
STILT follows an ensemble of particles backward in time, starting
from each observation site, using wind fields and turbulence
modeled by the Weather Research and Forecasting (WRF) model
(22). STILT derives an influence function (“footprint,” units: ppb
CH4 per unit emission flux) linking upwind emissions to each
measurement. Inputs of CH4 from surface sources along the en-
semble of back-trajectories are averaged to compute the CH4
concentration for comparison with each observation.
We use observations for 2007 and 2008 from diverse locations

and measurement platforms. The principal observations derive
from daily flask samples on tall towers (4,984 total observations)
and vertical profiles from aircraft (7,710 observations). Tower-
based observations are collected as part of the National Oceanic
and Atmospheric (NOAA)/Department of Energy (DOE)

cooperative air sampling network, and aircraft-based data are
obtained from regular NOAA flights (23), regular DOE flights
(24), and from the Stratosphere-Troposphere Analyses of Re-
gional Transport 2008 (START08) aircraft campaign (25); all data
are publicly available from NOAA and DOE. These observations
are displayed in Fig. 2 and discussed further in the SI Text (e.g.,
Fig. S2). We use a GIM framework (26, 27) to analyze the foot-
prints for each of the 12,694 observations, and these footprints
vary by site and with wind conditions. In aggregate, the footprints
provide spatially resolved coverage of most of the continental
United States, except the southeast coastal region (Fig. S3).
The GIM framework, using footprints and concentration

measurements, optimizes CH4 sources separately for each month
of 2007 and 2008 on a 1° × 1° latitude–longitude grid for the
United States. The contributions of fluxes from natural wetlands
are modeled first and subtracted from the observed CH4 (2.0
TgC·y−1 for the continental United States); these fluxes are much
smaller than anthropogenic sources in the United States and
thus would be difficult to independently constrain from atmo-
spheric data (SI Text).
The GIM framework represents the flux distribution for each

month using a deterministic spatial model plus a stochastic
spatially correlated residual, both estimated from the atmo-
spheric observations. The deterministic component is given by
a weighted linear combination of spatial activity data from the
EDGAR 4.2 inventory; these datasets include any economic or
demographic data that may predict the distribution of CH4
emissions (e.g., gas production, human and ruminant population
densities, etc.). Both the selection of the activity datasets to be
retained in the model and the associated weights (emission
factors) are optimized to best match observed CH4 concen-
trations. Initially, seven activity datasets are included from ED-
GAR 4.2, (i) population, (ii) electricity production from power
plants, (iii) ruminant population count, (iv) oil and conventional
gas production, (v) oil refinery production, (vi) rice production,
and (vii) coal production.
We select the minimum number of datasets with the greatest

predictive ability using the Bayesian Information Criterion (BIC)
(SI Text) (28). BIC numerically scores all combinations of available
datasets based on how well they improve goodness of fit and applies
a penalty that increases with the number of datasets retained.
The stochastic component represents sources that do not

fit the spatial patterns of the activity data (Fig. S4). GIM uses
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Fig. 1. US anthropogenic methane budgets from this study, from previous
top-down estimates, and from existing emissions inventories. The south-
central United States includes Texas, Oklahoma, and Kansas. US EPA esti-
mates only national, not regional, emissions budgets. Furthermore, national
budget estimates from EDGAR, EPA, and Kort et al. (13) include Alaska and
Hawaii whereas this study does not.
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Fig. 2. CH4 concentration measurements from 2007 and 2008 and the number
of observations associated with each measurement type. Blue text lists the num-
ber of observations associated with each stationary tower measurement site.
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a covariance function to describe the spatial and temporal cor-
relation of the stochastic component and optimizes its spatial
and temporal distribution simultaneously with the optimization
of the activity datasets in the deterministic component (SI Text,
Fig. S5) (26–28). Because of the stochastic component, the final
emissions estimate can have a different spatial and temporal
distribution from any combination of the activity data.
If the observation network is sensitive to a broad array of

different source sectors and/or if the spatial activity maps are
effective at explaining those sources, many activity datasets will
be included in the deterministic model. If the deterministic
model explains the observations well, the magnitude of CH4
emissions in the stochastic component will be small, the assign-
ment to specific sectors will be unambiguous, and uncertainties
in the emissions estimates will be small. This result is not the case
here, as discussed below (see Results).
A number of previous studies used top-down methods to

constrain anthropogenic CH4 sources from global (29–33) to
regional (13–15, 34–38) scales over North America. Most regional
studies adopted one of three approaches: use a simple box model
to estimate an overall CH4 budget (14), estimate a budget using
the relative ratios of different gases (15, 37–39), or estimate
scaling factors for inventories by region or source type (13, 34–
36). The first two methods do not usually give explicit in-
formation about geographic distribution. The last approach
provides information about the geographic distribution of sour-
ces, but results hinge on the spatial accuracy of the underlying
regional or sectoral emissions inventories (40).
Here, we are able to provide more insight into the spatial

distribution of emissions; like the scaling factor method above,
we leverage spatial information about source sectors from an
existing inventory, but in addition we estimate the distribution of
emissions where the inventory is deficient. We further bolster
attribution of regional emissions from the energy industry using
the observed correlation of CH4 and propane, a gas not pro-
duced by biogenic processes like livestock and landfills.

Results
Spatial Distribution of CH4 Emissions. Fig. 3 displays the result of
the 2-y mean of the monthly CH4 inversions and differences from
the EDGAR 4.2 inventory. We find emissions for the United
States that are a factor of 1.7 larger than the EDGAR inventory.
The optimized emissions estimated by this study bring the model
closer in line with the observations (Fig. 4, Figs. S6 and S7).
Posterior emissions fit the CH4 observations [R2 = 0:64, root
mean square error (RMSE) = 31 ppb] much better than EDGAR

v4.2 (R2 = 0:23, RMSE = 49 ppb). Evidently, the spatial distri-
bution of EDGAR sources is inconsistent with emissions patterns
implied by the CH4 measurements and associated footprints.
Several diagnostic measures preclude the possibility of major

systematic errors in WRF–STILT. First, excellent agreement
between the model and measured vertical profiles from aircraft
implies little bias in modeled vertical air mixing (e.g., boundary-
layer heights) (Fig. 4). Second, the monthly posterior emissions
estimated by the inversion lack statistically significant seasonality
(Fig. S8). This result implies that seasonally varying weather
patterns do not produce detectable biases in WRF–STILT. SI
Text discusses possible model errors and biases in greater detail.
CH4 observations are sparse over parts of the southern and

central East Coast and in the Pacific Northwest. Emissions
estimates for these regions therefore rely more strongly on the
deterministic component of the flux model, with weights
constrained primarily by observations elsewhere. Therefore,
emissions in these areas, including from coal mining, are
poorly constrained (SI Text).

Contribution of Different Source Sectors. Only two spatial activity
datasets from EDGAR 4.2 are selected through the BIC as
meaningful predictors of CH4 observations over the United
States: population densities of humans and of ruminants (Table
S1). Some sectors are eliminated by the BIC because emissions
are situated far from observation sites (e.g., coal mining in West
Virginia or Pennsylvania), making available CH4 data insensitive
to these predictors. Other sectors may strongly affect observed
concentrations but are not selected, indicating that the spatial
datasets from EDGAR are poor predictors for the distribution of
observed concentrations (e.g., oil and natural gas extraction and
oil refining). Sources from these sectors appear in the stochastic
component of the GIM (SI Text).
The results imply that existing inventories underestimate emis-

sions from two key sectors: ruminants and fossil fuel extraction
and/or processing, discussed in the remainder of this section.
We use the optimized ruminant activity dataset to estimate the

magnitude of emissions with spatial patterns similar to animal
husbandry and manure. Our corresponding US budget of 12.7 ±
5.0 TgC·y−1 is nearly twice that of EDGAR and EPA (6.7 and
7.0, respectively). The total posterior emissions estimate over the
northern plains, a region with high ruminant density but little
fossil fuel extraction, further supports the ruminant estimate
(Nebraska, Iowa, Wisconsin, Minnesota, and South Dakota).
Our total budget for this region of 3.4 ± 0.7 compares with 1.5
TgC·y−1 in EDGAR. Ruminants and agriculture may also be

mol m-2 s-1

This study (2007-2008 average)                   EDGARv4.2 inventory                       This study minus EDGARv4.2

−0.04

−0.02

0.00

0.02

>.0455
52

06−031−06−031− 06−031−

A B C

Fig. 3. The 2-y averaged CH4 emissions estimated in this study (A) compared against the commonly used EDGAR 4.2 inventory (B and C). Emissions estimated
in this study are greater than in EDGAR 4.2, especially near Texas and California.
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partially responsible for high emissions over California (41).
EDGAR activity datasets are poor over California (42), but
several recent studies (34, 36–38, 41) have provided detailed top-
down emissions estimates for the state using datasets from state
agencies.
Existing inventories also greatly underestimate CH4 sources

from the south-central United States (Fig. 3). We find the total
CH4 source from Texas, Oklahoma, and Kansas to be 8.1 ± 0.96
TgC·y−1, a factor of 2.7 higher than the EDGAR inventory. These
three states alone constitute ∼24 ± 3% of the total US anthro-
pogenic CH4 budget or 3.7% of net US greenhouse gas emissions
[in CO2 equivalents (10)].
Texas and Oklahoma were among the top five natural gas pro-

ducing states in the country in 2007 (18), and aircraft observations of
alkanes indicate that the natural gas and/or oil industries play a sig-
nificant role in regional CH4 emissions. Concentrations of propane
(C3H8), a tracer of fossil hydrocarbons (43), are strongly correlated
with CH4 at NOAA/DOE aircraft monitoring locations over Texas
andOklahoma (R2 = 0:72) (Fig. 5). Correlations aremuch weaker at
other locations in North America (R2 = 0:11 to 0.64).
We can obtain an approximate CH4 budget for fossil-fuel ex-

traction in the region by subtracting the optimized contributions

associated with ruminants and population from the total emis-
sions. The residual (Fig. S4C) represents sources that have
spatial patterns not correlated with either human or ruminant
density in EDGAR. Our budget sums to 3.7 ± 2.0 TgC·y−1,
a factor of 4.9 ± 2.6 larger than oil and gas emissions in ED-
GAR v4.2 (0.75 TgC·y−1) and a factor of 6.7 ± 3.6 greater than
EDGAR sources from solid waste facilities (0.55 TgC·y−1), the
two major sources that may not be accounted for in the de-
terministic component. The population component likely cap-
tures a portion of the solid waste sources so this residual methane
budget more likely represents natural gas and oil emissions than
landfills. SI Text discusses in detail the uncertainties in this sector-
based emissions estimate. We currently do not have the detailed,
accurate, and spatially resolved activity data (fossil fuel extraction
and processing, ruminants, solid waste) that would provide more
accurate sectorial attribution.
Katzenstein et al. (2003) (14) were the first to report large

regional emissions of CH4 from Texas, Oklahoma, and Kansas;
they cover an earlier time period (1999–2002) than this study.
They used a box model and 261 near-ground CH4 measurements
taken over 6 d to estimate a total Texas–Oklahoma–Kansas CH4
budget (from all sectors) of 3.8 ± 0.75 TgC·y−1. We revise their
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estimate upward by a factor of two based on the inverse model
and many more measurements from different platforms over two
full years of data. SI Text further compares the CH4 estimate in
Katzenstein et al. and in this study.

Discussion and Summary
This study combines comprehensive atmospheric data, diverse
datasets from the EDGAR inventory, and an inverse modeling
framework to derive spatially resolved CH4 emissions and
information on key source sectors. We estimate a mean annual
US anthropogenic CH4 budget for 2007 and 2008 of 33.4 ± 1.4
TgC·y−1 or ∼7–8% of the total global CH4 source. This estimate
is a factor of 1.5 and 1.7 larger than EPA and EDGAR v4.2,
respectively. CH4 emissions from Texas, Oklahoma, and Kansas
alone account for 24% of US methane emissions, or 3.7% of the
total US greenhouse gas budget.
The results indicate that drilling, processing, and refining activi-

ties over the south-central United States have emissions as much as
4.9 ± 2.6 times larger than EDGAR, and livestock operations across
the US have emissions approximately twice that of recent in-
ventories. The US EPA recently decreased its CH4 emission factors
for fossil fuel extraction and processing by 25–30% (for 1990–2011)
(10), but we find that CH4 data from across North America instead
indicate the need for a larger adjustment of the opposite sign.
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This supplement contains further explanation of the modeling
and statistical methods and provides additional model validation.

Atmospheric Modeling Approach
Transport Model Overview.This study uses STILT, the Stochastic
Time-Inverted Lagrangian Transport model, for all atmo-
spheric transport simulations (1). Model runs use an ensemble
of 500 particles followed 10 d back in time. The methane in-
crements computed from continental surface sources are
added to the methane boundary condition, the concentration
of methane in air masses before being influenced by emissions
in North America.
The model equation can be written as (2)

z=Hs+ e; [S1]

where z (dimensions n× 1) is the contribution of continental
sources to the observation sites, and s (m× 1) are the true, un-
known methane emissions. Any estimate of the unknown emis-
sions (s) is termed ŝ. The total methane concentration measured
at the tower or aircraft is given by z+ b, where b (n× 1) is the
boundary condition. The influence footprint H gives the concen-
tration enhancement at the measurement site due to unit emis-
sion flux from each grid cell. The footprint has units of
concentration per surface flux, or parts per billion (ppb) per
μmol·m−2·s−1. Each row of H (n×m) is the footprint associated
with an individual methane measurement. Finally, e (n× 1) de-
scribes model–data mismatch errors, all model or measurement
errors that are unrelated to an imperfect emissions estimate. In
other words, this mismatch remains the same irrespective of the
emissions estimate (̂s) used in the model. The mismatch in-
cludes, but is not limited to, errors in modeled transport, the
methane boundary condition (b), and the methane measure-
ments. Common inversion frameworks based on Gaussian statis-
tics, including this one, assume that all model–data mismatch
errors (e) are random with a mean of zero and a covariance
described by the n× n matrix R.
STILT trajectories are driven by the Weather Research and

Forecasting model (WRF, version 2.1.2) meteorological fields (3,
4). Our WRF simulations consist of sequential 30-h meteoro-
logical forecasts initiated daily from NARR (North American
Regional Reanalysis). All simulations include convection using
a Grell–Devenyi scheme (5). These wind fields use a nested
resolution: 10 km over most of the continental United States and
40 km over other North American regions.

Methane Boundary Condition.The boundary condition (b) could be
constructed either from interpolated measurements or from the
output of a global chemical tracer model (such as Geos-Chem).
We choose the former approach due to uncertainties associated
with the global distribution of methane emissions.
We construct the boundary condition using a two-stage process.

First, we use an empirical methane boundary curtain over the
Pacific Ocean as an initial guess for b. This western curtain
consists of National Oceanic and Atmospheric Administration
(NOAA) measurements near or over the Pacific Ocean, in-
terpolated latitudinally, vertically, and daily using a curve-fitting
procedure (6). The individual trajectories in every 500-trajectory
STILT simulation typically end at different locations and reach
the western boundary at different latitudes, times, or elevations.
The mean statistics of the trajectory ensemble at the western

curtain provide the initial value for b. Most of the STILT back-
trajectories in this study reach the Pacific coastline less than 10 d
after leaving the observation site (64%). One hundred percent of
trajectories originating from the Walnut Grove, California
(WGC) site, 83% of those originating at Erie, Colorado (BAO),
60% at West Branch, Iowa (WBI), and 60% from Moody, Texas
(WKT) reach the Pacific Ocean. The Martha’s Vineyard and
Argyle, Maine, sites have the lowest fraction of trajectories that
reach the Pacific Ocean (37% and 32%, respectively) although
many of the remaining trajectories never exit the continent
during the 10-d span of the trajectory run.
Second, we use NOAA aircraft observations over North

America in the free troposphere (>3,000 m) to fit the initial
boundary estimate to regional conditions or airflow patterns.
The adjustment is most relevant for observation sites farther
from the western curtain (e.g., Massachusetts and Maine). We
calculate, for different regions and seasons, the mean model-
observation difference above 3,000 m using the initial boundary
guess and Emissions Database for Global Atmospheric Research
(EDGAR) v4.2. Regions include the western, eastern, south-
central, and north-central portions of the United States over
winter, spring, summer, and fall. The purpose of this adjustment
is twofold. First, it accounts for the inflow of “clean background”
air that may enter a region outside the prevailing westerlies.
Second, it accounts for the small amount of methane oxidation
that may occur en route between the western boundary curtain
and the methane measurement sites. This aircraft-based adjust-
ment has a mean of −2:7 ppb and a maximum magnitude of −7
ppb. An inversion using the initial western boundary curtain
without the regional adjustment estimates methane budgets of
32.0 and 7.7 TgC·y−1 for the United States and Texas–Oklaho-
ma–Kansas, respectively, within about 5% of the final best esti-
mate in the main article.
The boundary condition exhibits marked seasonality, with an

average 40 ppb peak in winter. This peak reflects large-scale seasonal
changes in Northern Hemisphere clean-air concentrations.
WRF–STILT does not explicitly model atmospheric oxidation

processes. We fit the boundary condition to local or regional free
troposphere values, eliminating the need to consider longer
range oxidation chemistry. Furthermore, the footprint (H) is
greatest within 2–3 d of the associated measurement. Methane
has a global-averaged lifetime of 7–11 y (7, 8), implying methane
decay of less than 1–1.5 ppb over these 2- to 3-d time scales.

Study Time Period.We choose 2007–2008 as the time frame of this
study for two reasons. First, there are no daily methane mea-
surements from US tower sites before mid-2006, with the ex-
ception of the Niwot, Colorado sites. Weekly to monthly methane
observations are available at some sites before 2006. Second, the
WRF meteorology fields used here are available only through
2008. These fields are validated by Nehrkorn et al. (2010) (4) and
used in a number of existing studies (9–12), but they have a lim-
ited time scope.

Observations.We use diverse methane measurements taken at tall
towers or by aircraft during 2007–2008. Measurements include
daily flask samples from the NOAA/DOE tower network (weekly
at Argyle and Ponca City): Argyle, Maine [AMT, 45°N, 69°W,
107 m above ground level (agl)]; Erie, Colorado (BAO, 40°N,
105°W, 300 m agl); Park Falls, Wisconsin (LEF, 46°N, 90°W, 244
m agl), Martha’s Vineyard, Massachusetts (MVY, 41°N, 71°W,
12 m agl); Niwot Ridge and Niwot Forest, Colorado (NWF,
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NWR, 40°N, 105°W, 2, 3, 23 m agl); Ponca City, Oklahoma
(SGP, 37°N, 97°W, 60 m agl); West Branch, Iowa (WBI, 42°N,
93°W, 379 m agl); Walnut Grove, California (WGC, 38°N, 121°
W, 91 m agl), and Moody, Texas (WKT, 31°N, 97°W, 122, 457 m
agl) (Fig. 2). The inverse model incorporates surface data and
aircraft measurements up to 2,500 m agl; observations at higher
altitudes are less sensitive to surface emissions and are reserved
for model validation and adjustment of the boundary condition.
The flask and aircraft data are sampled only during the daytime
hours so this study is not affected by the large uncertainties as-
sociated with modeling the nocturnal boundary layer (13, 14).

Statistical Methods
We use a geostatistical inverse modeling (GIM) framework to
estimate monthly methane emissions (s) for 2007 and 2008 on
a 1° × 1° latitude–longitude grid (15–17):

s=Xβ+Nð0;QÞ: [S2]

The GIM uses a deterministic model ðXβÞ for the prior esti-
mate of emissions, similar to a multiple regression. Each col-
umn of X is a different spatial dataset, including a column for
a constant component, and β is the vector of associated un-
known coefficients. This setup differs from a Bayesian synthe-
sis inversion, which typically uses a prior with a static, known
magnitude (18, 19).
The GIM also has a stochastic component, described by a

multivariate normal distribution N with a mean of zero and co-
variance matrix Q. This component describes all emissions that
do not fit the spatial pattern of the deterministic model. Unlike
most Bayesian synthesis inversions, the GIM accounts for spatial
and/or temporal correlation (i.e., covariance) in the stochastic
component by including off-diagonal terms in Q.
The GIM framework allows the atmospheric observations to

determine the spatial patterns of both the deterministic and
stochastic components. Also, the formulation ensures that the
prior has no overall bias, an important statistical assumption of
most inversion frameworks. A number of existing studies have
used this approach successfully for trace gas surface flux esti-
mation (11, 12, 17, 20, 21).
The best estimate of emissions (s) is typically the minimum of

the geostatistical cost function (17):

Ls; β =
1
2
lnjQj+ 1

2
lnjRj+ 1

2
ðz−HsÞTR−1ðz−HsÞ

+
1
2
ðs−XβÞTQ−1ðs−XβÞ  :

[S3]

This cost function, based on Gaussian statistics, cannot preclude
large negative emissions, and we use Lagrange multipliers to en-
force nonnegativity (22, 23). Large negative emissions would be
unrealistic for methane given that the soil sink is only ∼4% of
global methane loss (24). Any soil sink over the United States
would be far smaller than the posterior uncertainties and there-
fore not detectable by the inversion framework with any degree
of certainty. Lagrange multipliers, the method used to enforce
nonnegativity, is iterative and produces a robust estimate of the
posterior emissions subject to physical bounds. However, the
resulting posterior uncertainties are generally too large and
should be interpreted with caution. A recent paper discusses
this method in detail and the impact on the final emissions
estimate (23).

Covariance Matrix Estimation. Restricted maximum likelihood
(REML) provides an objective way to estimate the structure and
magnitude of the error covariance matrices in the inversion (R

and Q); it guarantees that the actual inversion residuals match
against those predicted in the covariance matrices (17, 25).
REML estimates the parameters (θ) that define R and Q by

minimizing a modified form of the cost function in Eq. S3. In
practice, it may be difficult to estimate the covariance matrix
parameters (θ) using Eq. S3 directly because this function also
depends on the unknown values of the fluxes (s) and the drift
coefficients (β). The restricted likelihood integrates over all
possible values of s and β. The integration effectively removes s
and β from the cost function, and the function is subsequently
reformulated only in terms of the covariance matrices and
several known pieces of information (see ref. 25 for a full
derivation):

Lθ   = − ln
Z
β

Z
s

pðs; β; θjz;HÞ ds  dβ

=
1
2
lnjΨj+ 1

2
lnjXTHTΨ−1HXj+ 1

2
zTΞz

[S4]

Ψ=HQHT +R [S5]

Ξ=Ψ−1 −Ψ−1HX
�
XTHTΨ−1HX

�−1
XTHTΨ−1: [S6]

where pðs; β; θjz;HÞ is the joint probability of the fluxes, co-
efficients, and covariance matrix parameters. The optimal co-
variance matrix parameters are those that minimize the above
equation, typically estimated with an iterative Gauss–Newton
algorithm. Many studies from geostatistics and other fields in-
dicate that REML is one of the most accurate and unbiased
methods for estimating errors and/or the structural parameters
of a statistical model (26–33). Among other advantages, it en-
sures that the weighted sum of squares residuals from the in-
version will follow the expected χ2 distribution (26).
In this study, we construct the covariance matrix R as a di-

agonal matrix. To estimate the diagonal elements of R (σ2R, the
model–data mismatch variance), we first calculate the variance
of the model–measurement residuals for each measurement site
when the STILT model is run with the EDGAR v. 3.2 FT2000
anthropogenic emissions inventory. Two top-down studies find
that this inventory has the correct overall magnitude over the
United States (9, 34), and thus we use this version of EDGAR
over others as a starting point in error estimation. We then use
REML to estimate a single scaling factor to align the initial es-
timate with the variances suggested by the atmospheric data.
The estimation of Q follows a slightly different form. The

setup here estimates a constant value for the a priori variance
(the diagonal elements). In other words, we assume there is little
spatial or temporal variability in the variance in the stochastic
component of the emissions estimate, an assumption that makes
sense given large emissions in disparate regions of the United
States and apparent absence of large seasonality in anthropo-
genic sources. Other parameters of Q to estimate include l, the
decorrelation length parameter, and t, the decorrelation time
parameter (where 3l and 3t are the total approximate decorre-
lation length and time, respectively). REML would not converge
on a decorrelation length for the off-diagonal elements of
Q. This result may be due to geographic heterogeneity in the
correlation lengths of the stochastic component. We set
a decorrelation length parameter (l) at 100 km, a compromise
between emissions uncertainties that might be correlated over
the distance of a large urban area and uncertainties in agri-
cultural emissions that may be correlated over a larger regional
scale. Test inversions with l= 50, 300, and 500 km provide a
measure of the sensitivity of the estimated fluxes to the choice
of the decorrelation parameter. Ultimately, the choice of l

Miller et al. www.pnas.org/cgi/content/short/1314392110 2 of 10

www.pnas.org/cgi/content/short/1314392110


has little impact on the total US anthropogenic budget (less
than 1 TgC·y−1).
Using REML, we estimate a variance in the stochastic com-

ponent of 0:041± 0:001  μmol ·m−2·s−1 (i.e., the square root of
the diagonal elements of Q). The decorrelation time and length
parameters in the exponential covariance function are estimated
at t= 36± 5 d and l= 100 km, respectively.

The Deterministic Model. The GIM setup here adopts spatial ac-
tivity datasets from the EDGAR inventory as predictors (X) for
the distribution of methane emissions (see the list of spatial
activity data in Model and Observation Framework in the main
article) and uses atmospheric data to estimate the associated
emission factors (β). The emissions factors in existing inventories
can be highly uncertain and have recently changed by up to 50% in
EDGAR for sectors such as coal and natural gas (35) (Fig. S1).
We use a model selection method to assemble an optimal set of

spatial activity datasets for the inversion. These methods will
select as many predictors for use in X that can explain variability
in the data but will prevent an over-fit or unreliable coefficient
estimates (36, 37). We implement one of the most common
methods, the Bayesian information criterion (BIC) (11, 38, 39).
The BIC numerically scores all possible combinations of activity
datasets based on how well they improve goodness of fit (i.e., the
log-likelihood of the model, similar to the weighted sum of
squares) and applies an increasing penalty for model complexity.
For each additional activity dataset, the penalty increases with
the natural log of number of observations. The best candidate
model (X) is the one with the lowest BIC score (11):

β̂=
�
XTHTΨ−1HX

�−1
XTHTΨ−1z [S7]

BIC= lnjΨj+
�
z−HXβ̂

�T
Ψ−1

�
z−HXβ̂

�
+ p  lnðnÞ; [S8]

where p is the number of predictors (number of columns in X),
and n is the number of methane measurements.
The drift coefficients (β) in the model of the mean must be

positive because a spatial dataset should never contribute neg-
atively to the posterior methane emissions. Therefore, we elim-
inate all candidate models from consideration that yield negative
coefficients.
The BIC does not support hypothesis testing with P values, but

the difference in BIC scores provides a metric of confidence
(40). A score difference greater than 2 indicates notable evi-
dence against the higher scoring model, and a score increment
greater than 10 indicates “very strong” evidence against that
model.
Only two spatial datasets from EDGAR are identified by the

BIC as important predictors of methane observations over the
United States:

β0 + β1½population density�+ β2½ruminant density�

Where β0, β1, and β2 are the coefficients of the spatial activity
data. The first term, β0, represents the mean of all sources with
spatial patterns other than population or ruminant density. Table
S1 provides example BIC scores for this and other candidate
models, including what are commonly considered the largest
methane source sectors. The BIC scores strongly suggest that
there is either insufficient data to include more than two activity
datasets or that several existing activity datasets do not ade-
quately describe the methane observations. In particular, the
table indicates that the observation network is not sufficiently
sensitive to coal sources and that the oil and gas production
activity datasets from EDGAR do not accurately represent the

spatial distribution of the methane emissions consistent with
observations.
Fig. S4 displays the methane budget from each of the spatial

datasets in the deterministic model (e.g., scaled by the estimated
coefficients, β̂). It is important to note that population density
serves as a proxy for a number of source sectors that are colo-
cated with population (e.g., natural gas distribution, landfills, and
wastewater treatment) at the 1° spatial scale. Additionally, fuel
extraction and animal husbandry are colocated over Texas and
Oklahoma so some emissions assigned to ruminant density (Fig.
S4A) may instead partially reflect fossil fuel industry sources.

Uncertainty Analysis
General Uncertainties in the Model and Measurements. Fig. S2
provides a visualization of the model–data mismatch errors es-
timated by REML (σR, the SD of e). This mismatch includes
random model and measurement errors unrelated to the emis-
sions: errors in the wind fields, boundary layer height, methane
boundary condition, and spatial/temporal aggregation, among
other error sources. Model–data mismatch typically ranges from
40% to 70% of the total methane emissions signal seen at each
tower, but the relative mismatch is higher at “clean air” sites like
Niwot Ridge, Colorado (NWF/NWR). Absolute uncertainties
are largest at measurement sites close to mountain ranges (e.g.,
BAO and WGC). Those uncertainties likely reflect difficulties in
modeling wind fields near complex topography. Over Texas and
Oklahoma, where the estimated anthropogenic methane emis-
sions are among the largest in the United States, the model–data
mismatch is just under half the magnitude of the total average
methane signal.

Uncertainties in the Emissions Estimate. The posterior covariance
matrices (denoted V) provide a measure of uncertainty in the
estimated emissions (̂s) and estimated coefficients (β̂) (17):

"
Vŝ Vŝβ̂
Vβ̂ŝ Vβ̂

#
  =  

�
Q−1 +HTR−1H Q−1X

XTQ−1 XTQ−1X

�−1
: [S9]

Eq. S9 is the inverse of the Hessian of the cost function (Eq. S3).
The posterior covariance matrices, summed across different
months and locations, produce the confidence intervals on the
methane budgets listed throughout the paper. All uncertainties
listed are 2σŝ and 2σβ̂, unless otherwise noted.
The uncertainties in the emissions estimate vary depending

on the temporal or spatial scales of interest. For example, the
uncertainties can be larger than the estimated emissions at
the 1° latitude–longitude spatial scale and monthly temporal
scale. However, uncertainties decrease as the emissions esti-
mate is averaged over larger regions and longer times (Fig.
S5). Intuitively, the uncertainties are higher at finer spatial/
temporal scales because the atmospheric methane data have
limited capacity to determine the precise location or time of
grid-scale emissions. The methane data, however, can indicate
regional or national average emissions with greater confidence.
Mathematically, the uncertainties per unit area decrease at
aggregated spatial/temporal scales because the covariances in
the posterior covariance matrix are often negative. Therefore,
at aggregated scales, the mean of the variances/covariances is
usually smaller.
The covariance matrix Vŝ encompasses most but not all

uncertainties in the emissions estimate. It accounts for un-
certainties in the drift coefficients ðβ̂Þ and in the stochastic
component of the emissions, and it accounts for uncertainty
due to randomly distributed model–data mismatch errors
(e=Nð0;RÞ) (Eq. S1). However, existing statistical inversions
cannot explicitly account for model–data mismatch errors that
produce overall bias (i.e., if e has a nonzero mean). Potential
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bias-type errors in WRF–STILT are discussed separately
throughout the remainder of SI Text.

Wetland Sources. We model the wetland contribution using the
Kaplan wetland inventory (41, 42), scaled in magnitude to match
the observations as in refs. 42 and 43. This signal (about 9 ppb in
late summer, 2.0 Tg C TgC·y−1 for the continental United States)
is then removed from z to subtract the influence of wetland
sources from the data. Wetlands make only small contributions to
the signals at most of the observation sites in the United States
and thus cannot be reliably constrained in the inversion. After this
subtraction, the inversion produces optimized anthropogenic
budgets with little seasonal variation (Fig. S8). Because wetland
emissions are strongly seasonal, this result indicates that our
procedure does not produce wetland-related biases.
We also run a separate test inversion using the Dynamic Land

EcosystemModel (DLEM) for wetland subtraction instead of the
Kaplan model (43–45) (also 2.0 TgC·y−1 for the continental
United States). This test inversion produces a US anthropogenic
methane budget of 34.1 TgC·y−1 and a south-central US budget
of 8.1 TgC·y−1, very similar to the results using Kaplan wetland
emissions. Therefore, we conclude that our results are in-
dependent of the source model used to account for wetland
emissions.
Furthermore, wetland models predict only small to modest

emissions over the largest source regions in our study. Two recent
studies compare wetland methane fluxes for a number of bio-
geochemical models (46, 47). None of the models put significant
wetland emissions over Texas or Oklahoma, both relatively dry
regions, where our study found large methane emissions. Exist-
ing land maps indicate wetlands along the Mississippi River and
Delta, but modeled wetland emissions in this region are none-
theless five times smaller than the anthropogenic sources esti-
mated by our study in this area (46, 47). The correlation between
methane concentrations and propane in the south-central region
additionally reinforces the attribution of high CH4 fossil-fuel
extraction and processing.

Geological Sources. Several studies report methane emissions from
geological degassing, including ground seepage, geothermal
emissions, and volcanic emissions (48–50). This study does not
account for geological sources explicitly, but previous studies
indicate that these fluxes would be small compared with the
magnitude of US anthropogenic emissions. The estimated mag-
nitude of this source ranges from 2.2–9% of total global emissions
(48–50). One study estimates that terrestrial geological sources, in
particular, contribute 1.1–2.8% of the global methane budget, and
most emissions are attributable to volcanic activity and mud vol-
canoes (48). A few mud volcanos exist along the California
coastline, but these geological features are otherwise uncommon
over the continental United States (51). Based upon this in-
formation, we estimate at most an ∼ 5% uncertainty in the
emissions derived here due to geological degassing.

Uncertainties in Sector-Based Emissions Estimates. This section
analyzes in greater depth the uncertainties in sector-based
emissions estimates (e.g., for ruminants or the approximate fossil-
fuel budget). These uncertainties, listed in the main article, are
calculated using the covariance matrices for β̂ and ŝ (Eq. S9),
summed to large spatial and annual temporal scales. The un-
certainties on the sector-based budget estimates are large due to
uncertainties in β̂. The coefficients describe emissions with spa-
tial patterns similar to the activity data, and colocated source
sectors or errors in the activity datasets make the coefficient
estimates ðβ̂Þ less definitive. For example, ruminants and fossil
fuel extraction have similar distributions over the south-central
United States so some of the emissions assigned to ruminants in
the deterministic model could instead be from the Texas and

Oklahoma fossil-fuel extraction sector. Similarly, if landfill
emissions do not always coincide with population, then some
landfill emissions may appear in the ruminant (Fig. S4A), mean,
or stochastic components (Fig. S4C) instead of the population
component (Fig. 2B). Therefore, the atmospheric methane data
provides strong constraints on total emissions at the regional or
national scale, but estimates by source sector often have larger
confidence intervals.
We run a test inversion to investigate the possible effects of

spatial correlation between ruminants and other source sectors.
In this test inversion, we estimate different emissions factors (β̂)
for ruminants over four different regions of the United States:
the western (CA, OR, WA, NV, ID, MT, AZ, UT, WY, NM,
CO), the midwest (NE, SD, ND, MN, IA, MO, WI, IL, MI, IN),
the south-central (TX, OK, KS, LA, AK), and the eastern
United States (MS, TN, KY, AL, FL, GA, NC, SC, VA, WV,
OH, PA, NY, MD, NJ, CT, VT, NY, NH, MA, RI, ME). Any
differences in emissions factors by region represent one of three
possibilities. First, emissions factors for agriculture may differ
due to regional agricultural practices or climate. Second, the
range may be caused by differences in the spatial distribution of
the ruminant activity dataset from actual agricultural emissions.
Third, the range may represent uncertainties caused by source
sectors colocated with ruminants. Our agriculture emissions
factors in the test case are lowest over the west and midwest
(1.25 and 1.3 times EDGAR, respectively) and highest over the
south-central United States (2.6 times EDGAR). We repeat the
calculation of south-central US nonagriculture and nonpopulation
emissions. In the main article, we estimate this budget at 3.7 ± 2.0
TgC·y−1, a budget that could represent oil and gas emissions
or unaccounted landfills. If we apply the western US ruminant
emissions factor to Texas, Oklahoma, and Kansas, we obtain
a higher estimate for this fossil fuel and/or landfill budget of 4.74
TgC/y. Alternately, if we apply the south-central US ruminant
emissions factor to Texas, Oklahoma, and Kansas, we obtain
a lower estimate for the fossil fuel and/or landfill budget of 2.94
TgC/y. These estimates are within the confidence intervals listed in
the main article for ruminants and fossil-fuel extraction and/or
ruminants. Note that the different setup for X in this test case does
not affect total posterior methane budgets in each region by more
than 1%; changes in the configuration of X only affects emissions
attribution by sector.

Model Capability and Validation
This section further validates the WRF–STILT model, the esti-
mated methane budget, and discusses the geographic coverage of
the methane observations.

Model Transport and Footprint Validation. The WRF fields in this
study are validated extensively by Nehrkorn et al. (4), and several
pertinent statistics are included here. The WRF simulations are
set up specifically to conserve mass and do so by a factor of ten
better than other meteorological products like the National
Centers for Environmental Prediction (NCEP) global analysis
fields [Final (FNL)] (4). Compared with US and Canadian ra-
diosondes, horizontal winds in WRF exhibit a root mean squared
error (RMSE) of 2.5–4 m/s with no change in error statistics at
the top of the planetary boundary layer (4).
Several previous inversion studies with STILT estimate emis-

sions that are consistent across different meteorologies and com-
pared with Eulerian models. This fact further validates model
transport and indicates a lack of overall bias in the WRF–STILT
footprints (H). Miller et al. (12) use both WRF and the Regional
Atmospheric Modeling System (RAMS) with STILT to estimate
US nitrous oxide emissions; the US budgets match within 12 ±
6% (12). Furthermore, STILT studies of carbon monoxide and
methane produce budgets comparable with top-down emissions
estimates with the Geos–Chem model. Constraints on summertime
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US carbon monoxide emissions with RAMS–STILT and Geos-
chem match to within 10% (52, 53), and methane budgets for the
Hudson Bay Lowland in Canada estimated with WRF–STILT and
Geos–Chem are similar within 5% (42, 43).

Validation of the Methane Boundary Condition. Methane measure-
ments from aircraft show good agreement with modeled con-
centrations, notably above 3,000 m where regional surface
emissions have little influence (Fig. 4 in the main article). At these
altitudes, the mean measurement–posterior model difference is
2.8 ppb, with a SD of 18 ppb. These statistics reflect uncertainties
in the modeled boundary condition but also reflect uncertainties
in the modeled vertical gradient and in advection or convection
of heterogeneous air masses in the upper free troposphere.
To test the effect of a 2.8-ppb uncertainty, we subtract this

amount from the boundary condition and reestimate the emis-
sions. This test inversion produces US and south-central budgets
of 35.4 ± 1.4 and 8.4 ± 1.0 TgC·y−1, respectively. Given these
uncertainties, the methane budgets presented in this study may
be slightly low by 3–9%.

Comparison Against Aircraft and Tower Data. Regular methane
observations from the NOAA aircraft monitoring network help
validate the vertical model structure (i.e., planetary boundary
layer height and convection). The comparison in Fig. 4 of the
main article indicates several notable features of the model. First,
the close match between model and observations in the free
troposphere above 3,000 m confirms the suitability of the two-
stage methane boundary condition, as discussed earlier. Second,
the vertical structure in the model matches well against obser-
vations (to within 20 ppb at any aircraft sampling location).
Two additional figures provide further model–data compari-

son. First, Fig. S6 compares modeled methane concentrations
against time series of measurements at the NOAA tower loca-
tions. As discussed in the main article, the EDGAR inventory
underestimates emissions in California (WGC tower) and Texas
(WKT tower) more severely than in other geographic regions of
the United States. Second, Fig. S7 compares all methane ob-
servations used in the inversion (from aircraft and tall tower
locations) against modeled concentrations. Both Figs. S6 and S7
highlight the improved data–model fit given by the posterior
emissions estimate.

The Utility of Aircraft Data in the Inversion. To gauge the utility of
aircraft data in the inversion, we run a test GIM using only
observations from the ground sites. This inversion estimates a US
methane budget of 37.4 ± 3.0 TgC·y−1 and Texas–Oklahoma–
Kansas budget of 9.6 ± 1.3 TgC·y−1. This test inversion produces
emission fields that bleed into sparsely populated areas adjacent
to large source regions (e.g., surrounding Texas and California).

However, modeled concentrations using this test emissions es-
timate are too high within the free troposphere compared with
aircraft data. As a result, we infer that an estimated US budget
from an inversion without aircraft data would likely be too high
by 7–17%. The aircraft data bound the vertical redistribution of
surface emissions. Without this bound, the inversion may in-
accurately estimate emissions that agree with surface methane
measurement but nevertheless result in too much methane in the
free troposphere and emission fields that spread too far across
the landscape.

Geographic Coverage. Fig. S3 visualizes the average footprint (H)
of the methane measurement network in 2007 and 2008. The
figure confirms that the observation network is sensitive to
emissions over much of the central and western United States
but insensitive to coal or urban-related emissions in the mid and
southern Atlantic states. In particular, the sparsity of ob-
servations near West Virginia and Pennsylvania inhibits a strong
constraint on East Coast coal emissions. US EPA estimates that
coal constitutes 11% of all methane emissions, and approxi-
mately one third of all US coal production is in Appalachia (54,
55). Consequently, we estimate that a paucity of observations
over Appalachia may contribute a 1–3% uncertainty in the total
US methane budget.

Comparison with the Methane Estimate from Katzenstein et al. (56).A
steady increase in the number of US gas wells between 2001 and
2007–2008 may partially explain the differences between this study
and Katzenstein et al. (56). The total number of wells in Texas, for
example, increased by ∼58% over this time period (57).
Several aspects of our inverse-modeling study also allow a more

extensive picture of emissions than available to previous studies.
The NOAA/DOE observations from a diverse set of measurement
platforms characterize the atmospheric distribution of methane
over a multiyear period. We note that concentrations measured
weekly at the NOAA Texas (WKT) tower from 2001 to 2003
average ∼80 ppb higher than ground-level observations near the
WKT site during the Katzenstein et al. study (56). A stationary
front on the Texas–Oklahoma border and strong convection over
Texas during the 5-d measurement period may have lofted
methane plumes higher into the troposphere, beyond detection
at the surface. The WRF–STILT model simulates the temporal
and spatial variation in advection, convection, and boundary-
layer dynamics, consistent with meteorological data. This de-
tailed characterization of the atmosphere accounts for methane
plumes that are not uniformly mixed within the lower tropo-
sphere. Therefore, the comprehensive NOAA/DOE methane
measurements and our GIM provide perspective on national
emissions and source sectors not possible in previous efforts.
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Fig. S1. US methane emissions by sector from several existing inventories. All methane budgets are from the year 2005 except EDGAR v3.2 FT2000, which
estimates emissions from 2000.
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Fig. S2. A visualization of the estimated model–data mismatch across different methane measurement sites, compared against the 2-y averaged contribution
from anthropogenic emissions at each site (z, the concentration measurements minus the boundary condition and modeled wetland contribution).
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Fig. S3. The footprint of the 2007–2008 methane observation network (i.e., H, averaged by row). Contour lines represent the percentage of the summed
observation network footprint that is encapsulated by the given area. In other words, this figure illustrates the extent to which emissions in different locations
are “seen” by the observation network and provides a sense of the network’s ability to constrain sources across different regions.
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the stochastic component (C) changes by month (averaged in the plot here).
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emissions estimate declines as the estimate is averaged to greater spatial and temporal scales. A shows how uncertainties over the south-central United States
decrease as the grid-scale estimate is aggregated in time. B displays how the uncertainties decrease as the annual-average estimate is averaged spatially.
Uncertainties listed are σ ŝ.
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Fig. S8. Monthly anthropogenic methane budgets by season and associated uncertainties. The lack of strong seasonality implies minimal modeling errors due
to wetland emissions, seasonal boundary condition biases, or seasonal wind field biases.

Table S1. BIC scores for sample of candidate models

Candidate model Score

Population + ruminants 96,825
Population + ruminants + oil/gas production 96,924
Population + ruminants + coal 96,925
Pop. + ruminants + oil/gas prod. + coal + rice 96,942

We test all combinations of the spatial activity data from EDGAR 4.2 (refer
to Model and Observation Framework in the main article). We show only
selected examples here that include what are commonly considered the
largest methane source sectors.
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