

Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California

Hiroaki Yamagishi,^{1,2,3,4} Marian B. Westley,^{5,6} Brian N. Popp,⁷ Sakae Toyoda,^{2,8} Naohiro Yoshida,^{1,2,3,8,9} Shuichi Watanabe,^{1,2,10} Keisuke Koba,^{1,2,11} and Yasuhiro Yamanaka^{12,13}

Received 16 May 2006; revised 23 November 2006; accepted 22 December 2006; published 4 May 2007.

[1] Nitrous oxide (N₂O) is an important atmospheric greenhouse gas and is involved in stratospheric ozone depletion. Analysis of the isotopomer ratios of N₂O (i.e., the intramolecular distribution of ¹⁵N within the linear NNO molecule and the conventional N and O isotope ratios) can elucidate the mechanisms of N₂O production and destruction. We analyzed the isotopomer ratios of dissolved N₂O at a site in the eastern tropical North Pacific (ETNP) and a site in the Gulf of California (GOC). At these sites, the flux of N_2O to the atmosphere is extremely high but denitrification activity in the oxygen minimum zone (OMZ) also reduces N₂O to N₂. We estimated the isotopomeric enrichment factors for N₂O reduction by denitrification. The factor was $-11.6 \pm 1.0\%$ for the bulk (average) N, $-19.8 \pm 2.3\%$ for the center N (α -site nitrogen), $-3.4 \pm 0.3\%$ for the end N (β -site nitrogen), and $-30.5 \pm 3.2\%$ for the ¹⁸O of N₂O. Isotopomer analysis of N₂O suggests that nitrifiers should contribute to N₂O production more than denitrifiers at the oxycline above the OMZs in the ETNP (50-80 m) and in the GOC (80-300 m). In contrast, denitrifiers should largely contribute to the N₂O production and consumption in the OMZs both in the ETNP (120-130 m) and in the GOC (600-800 m). The N₂O isotopomer analysis will be a useful tool for resolving the distribution of water masses that carry a signal of N loss by denitrification.

Citation: Yamagishi, H., M. B. Westley, B. N. Popp, S. Toyoda, N. Yoshida, S. Watanabe, K. Koba, and Y. Yamanaka (2007), Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California, *J. Geophys. Res.*, *112*, G02015, doi:10.1029/2006JG000227.

Copyright 2007 by the American Geophysical Union. 0148-0227/07/2006JG000227\$09.00

1. Introduction

[2] Nitrous oxide (N_2O) is an important greenhouse gas [Ramanathan et al., 1985], and also plays a role in stratospheric ozone chemistry [Crutzen, 1970]. The ocean is an important source of N₂O to the atmosphere; however estimates of its annual emission vary widely, for example, 3.0 ± 2 TgN [Intergovernmental Panel on Climate Change, 2001] (17% of the total emission) and 5.8 \pm 2 TgN [Nevison et al., 2003] (33% of the total emission), because observations are limited and models of the oceanic N2O cycle are still evolving. Nitrification and denitrification are the main processes affecting the N₂O cycle in the oceans [Suntharalingam and Sarmiento, 2000]. Under aerobic conditions, N₂O is thought to be produced by autotrophic nitrifiers by chemical decomposition of hydroxylamine or of an intermediate between hydroxylamine and nitrite. Under lowoxygen conditions, N₂O production by autotrophic nitrifiers is enhanced, because ammonia oxidation to nitrite is accompanied by reduction of nitrite to N₂O [Poth and Focht, 1985; Ritchie and Nicholas, 1972], a process called nitrifier denitrification [Poth and Focht, 1985; Wrage et al., 2001].

[3] The eastern tropical North Pacific (ETNP) is one of the three major low-oxygen regions of the world's ocean, which account for most of the world's water column denitrification [*Gruber and Sarmiento*, 1997]. Annual

G02015

¹Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan.

²SORST Project, Japan Science and Technology Agency (JST), Kawaguchi, Japan.

³Research Center for the Evolving Earth and Planets, Tokyo Institute of Technology, Okayama, Japan.

⁴Now at Atmospheric Environmental Division, National Institute for Environmental Studies, Tsukuba, Japan.

⁵Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA.

⁶Now at Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA.

⁷Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA.

⁸Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan.

⁹Frontier Collaborative Research Center, Tokyo Institute of Technology, Yokohama, Japan.

¹⁰Mutsu Institute for Oceanography, Japan Agency for Marine-Earth Science and Technology, Mutsu, Japan.

¹¹Now at Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Tokyo, Japan.

¹²Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.

¹³Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

 N_2O emission is high from such low-oxygen regions [*Nevison et al.*, 1995], and has been estimated to be 25–50% of the total oceanic emission [*Suntharalingam et al.*, 2000]. Short-term fluctuations between a nondenitrification mode and a denitrification mode in the ETNP and the Arabian Sea could impact global climate by changes in N_2O emission [*Suthhof et al.*, 2001]. Therefore, in order to predict future changes in atmospheric N_2O concentration and to understand the impact of N_2O on climate, it is essential to understand the N_2O cycle in these low-oxygen regions in the oceans.

[4] The production processes of N₂O have been the subject of study for many years. Cohen and Gordon [1978] measured N₂O concentration in the ETNP and suggested that N2O is produced by nitrification and consumed by denitrification on the basis of the correlation between N2O concentration and apparent oxygen utilization (AOU) and the inverse correlation between N₂O concentration and nitrate deficit. In contrast, Pierotti and Rasmussen [1980] suggested that denitrification acts as a net source of N_2O under oxygen concentration of 0.1–0.3 mL L⁻¹, which is equivalent to 4.6-13.7 μ mol kg⁻¹ O₂ when sigma θ is 26. Yoshida et al. [1984] suggested that the nitrogen isotope ratio of N₂O in the ETNP indicates that subsurface water is a source of N₂O and that the extremely oxygen-depleted water is a sink. Yoshinari et al. [1997] analyzed nitrogen and oxygen isotope ratios of N2O in the oxic/suboxic boundaries in the ETNP and the Arabian Sea, and suggested that dissolved N2O is enriched in 15N and ¹⁸O owing to N₂O reduction (N₂O \rightarrow N₂) by denitrification and could be an important source of atmospheric N2O enriched in ¹⁵N relative to tropospheric N₂O. On the basis of the concentrations of nutrients and the bulk nitrogen and oxygen isotope ratios of N₂O in the ETNP, Westley et al. [2001] suggested that N_2O at the concentration maximum is produced by nitrification within the subsurface oxycline whereas denitrification consumes N2O in the core of the oxygen minimum zone (OMZ). However, the roles of microbial processes responsible for N2O production have not been resolved sufficiently, in part owing to a lack of adequate analytical tools.

[5] Recently, techniques have been developed to measure the isotopomer ratios of N₂O (intramolecular distribution of ¹⁵N within the linear NNO molecule) [Toyoda and Yoshida, 1999; Brenninkmeijer and Röckmann, 1999]. Toyoda and Yoshida [1999] defined the center and end positions of the N₂O molecule as α and β nitrogen, respectively, and the difference in isotope ratios between α and β -site nitrogen as the "¹⁵N-site preference" (SP = $\delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$). Isotopomer analysis of N₂O has been an important tool for resolving the N₂O cycle in the oceans. For example, in the subtropical North Pacific gyre, the minima of $\delta^{15}N$ and $\delta^{18}O$ indicated subsurface production of N2O and accounted for more than 40% of its emission from the surface to the atmosphere [Dore et al., 1998]. Subsequent isotopomer analysis of N_2O constrained the ratio to 40-75% and moreover suggested that nitrification (via nitrifier-denitrification) accounted for the in situ N₂O production [Popp et al., 2002].

[6] For relating isotopomer measurements to the production and consumption processes of N₂O, isotopomeric enrichment factors are essential. Recently, isotopomeric enrichment factors for N₂O production by nitrifiers [*Sutka* et al., 2003, 2004a] and denitrifiers [*Sutka et al.*, 2006; *Toyoda et al.*, 2005] have been studied. However, there are few reports on the isotopomeric enrichment factor for N₂O reduction by denitrifiers, which is necessary in order to use N₂O isotopomer ratios quantitatively. Thus the objectives of this research are, first, to estimate the isotopomeric enrichment factor for N₂O reduction and, second, to resolve quantitatively production and consumption processes of nitrous oxide in the ETNP and Gulf of California (GOC) using N₂O isotopomer analysis.

[7] Here we estimated the isotopomeric enrichment factor for N₂O reduction in the core of the oxygen minimum zone in the ETNP. Applying this enrichment factor in a steady state model for the N₂O release from denitrifiers, we evaluated the contribution of each production process to the N₂O cycle in the ETNP and GOC. The isotopomer analysis suggests that nitrifiers play a more important role for N₂O production than denitrifiers in the subsurface layers, whereas denitrifiers produce and consume N₂O at the oxygen levels below about 1 μ mol kg⁻¹ in the upper and lower portions of the OMZs. We found that the SP of N₂O is a useful tool for resolving the N₂O cycle under the suboxic conditions in the oceans (Here we defined suboxic condition as $1 \leq [O_2] < 50 \ \mu$ mol kg⁻¹).

2. Methods

2.1. Sampling

[8] Samples were collected in the ETNP ($16^{\circ}N$, $107^{\circ}W$) at a site located in the core of the low-oxygen region during Mav-June 2000 on the R/V Revelle. The site is the same as Station 5 of the Eastern Pacific Redox Experiment (EPREX) research cruise [Sansone et al., 2001; Sutka et al., 2004b; Westley et al., 2001]. Samples were also collected in the central GOC (26.30°N, 110.13°W) during September 2001 on the R/V New Horizon. The oxygen concentration was determined by Winkler titration [Grasshoff et al., 1983]. Nitrite and ammonium were measured using colorimetry [Grasshoff et al., 1983] and the fluorescence method of Jones [1991], respectively. Samples for N₂O concentration and isotopomer ratios were collected in 250-mL glass serum vials, preserved with HgCl₂, and sealed with butyl rubber stoppers (see Popp et al. [2002] for details).

2.2. N₂O Isotopomer Analysis

[9] For isotopomeric analysis, seawater was transferred from a serum vial to a sparging column and sparged with ultrapure helium (purity > 99.99995%). Water vapor and CO₂ were removed by magnesium perchlorate and NaOH (Ascarite II, GL Sciences Inc., Tokyo, Japan), respectively, and then extracted gases were collected on a stainless steel trap immersed in liquid nitrogen. These gases were carried by helium through Ascarite II and magnesium perchlorate again, and then cryofocused. N₂O was purified using a PoraPLOT-Q capillary column (25 m, 0.32 mm i.d., df = 10 μ m, Varian, Inc., Palo Alto, USA) at 27°C. The N₂O isotopomer ratios were determined by duplicate measurements on a Finnigan MAT 252 with modified collectors (Thermo electron corporation, Bremen, Germany). First the ratios of δ (45/44) and δ (46/44) and the N₂O concentration

were measured by monitoring mass (m/z) 44, 45, and 46 ions simultaneously. Then the ratio of $\delta(31/30)$ was measured by monitoring mass (m/z) 30 and 31 fragment ions. For the analysis of $\delta(31/30)$, samples were further purified using a precolumn inserted after the preconcentration trap in order to remove an interfering substance detected in mass (m/z) 31. The substance is most likely a fluorocarbon $(m/z 31 \text{ from } CF^+)$ [Kaiser et al., 2003]. The precolumn is a 1/4 inch o.d., 150-cm-long s.s. tube packed with silica gel (80/100 mesh) [Toyoda et al., 2005]. The final isotopomer ratios were calculated following Toyoda and Yoshida [1999]. We adopted the definition of Toyoda and Yoshida [1999] for the isotopomer/isotope ratios of N₂O, namely $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{15}N^{\text{bulk}}$ (conventional $\delta^{15}N$), and δ^{18} O. Isotopomer ratios of N₂O were calibrated with a standard gas produced by thermal decomposition of NH₄NO₃ [Toyoda and Yoshida, 1999]. The precision was estimated on the basis of the measurement of a laboratory reference gas dissolved in pure water to be less than $\pm 0.2\%$ for δ^{15} N^{bulk}, $\pm 0.4\%$ for δ^{15} N^{α}, $\pm 0.5\%$ for δ^{15} N^{β}, $\pm 0.4\%$ for δ^{18} O, and $\pm 0.9\%$ for SP (1 σ) of dissolved N₂O in duplicate 100 mL samples containing more than 20 nmol $kg^{-1} N_2 O$. Equilibrium concentration of $N_2 O$ is calculated from potential temperature and salinity using the equation of Weiss and Price [1980].

2.3. Advection-Diffusion-Reaction Model

[10] We estimated the isotopomeric enrichment factors for N_2O reduction from the concentration and isotopomer ratios of N_2O at the ETNP site using one-dimensional, vertical advection-diffusion-reaction models containing one reaction. Assuming steady state and that the vertical diffusion coefficient (K) is independent of depth, we obtain the following differential equation:

$$K(\partial^2 N/\partial z^2) - V(\partial N/\partial z) - F_z = 0, \qquad (1)$$

where K and V are the diffusion coefficient and advection velocity, respectively, in the z direction. The concentration and reduction rate of nitrous oxide are denoted by N and F_z , respectively. The values of each parameter are described in the Appendix. Assuming that N₂O reduction by denitrifiers can be a pseudo-first-order reaction of N₂O with the N₂O reduction rate (F_z) proportional only to the concentration of N₂O, the rate F_z is described as follows:

$$F_z = mN, \tag{2}$$

where, *m* is a reaction rate constant for the concentration model (validation of this assumption is discussed in section 4.2 and section I of auxiliary material Text S1¹). The differential operators in equation (1) were replaced by the Euler method of forward-difference approximations. The detailed procedure for estimating enrichment factors follows the model of *Cline and Kaplan* [1975]. In the models, the step interval was set to 5 m. Fitting the model to the measured N₂O concentration gives N₂O reduction rates at each depth.

[11] In our model, we designate N₂O isotope or isotopomer ratios with δ_i :

$$\delta_i(\%_0) = \left(R_{i\text{-sample}} / R_{i\text{-std}} - 1 \right) \times 1000 \tag{3}$$

where δ_i is $\delta^{15}N^{\text{bulk}}$, $\delta^{18}O$, $\delta^{15}N^{\alpha}$, or $\delta^{15}N^{\beta}$, and std is a standard. R_i is ${}^{15}R^{\text{bulk}}$, ${}^{18}R$, ${}^{15}R^{\alpha}$, or ${}^{15}R^{\beta}$, respectively, which are {[${}^{14}N^{15}N^{16}O$] + [${}^{15}N^{14}N^{16}O$]}/2 [${}^{14}N^{14}N^{16}O$], [${}^{15}N^{14}N^{16}O$]/[${}^{14}N^{14}N^{16}O$], respectively. The fractionation factors (α_i) are defined following *Mariotti et al.* [1981],

$$\alpha_i \equiv m/m, \tag{4}$$

where *m* is a reaction rate constant of the most abundant isotopomer, namely, ¹⁴N¹⁴N¹⁶O, for N₂O reduction, *i* describes bulk-N, ¹⁸O, α , or β , and *m_i* are reaction rate constants for either ¹⁵N- or ¹⁸O-isotopes, or either ¹⁴N¹⁵N¹⁶O- (¹⁵N^{α}-) or ¹⁵N¹⁴N¹⁶O- (¹⁵N^{β}-) isotopomers, respectively. Enrichment factors (ε_i) are defined following *Mariotti et al.* [1981],

$$\varepsilon_i \equiv (\alpha_i - 1) \times 1000. \tag{5}$$

[12] This definition gives a negative value for an isotopic/ isotopomeric enrichment factor, which is used in some reports [*Mariotti et al.*, 1981; *Ostrom et al.*, 2002]. The benefit of the definition is that it gives consistency between the value of the site preference of produced N₂O and the isotopomeric enrichment factors for decomposition of N₂O (see section II of auxiliary material Text S1). Substituting the concentrations of ¹⁵N- and ¹⁸O-isotopes, and ¹⁵N^{α}- and ¹⁵N^{β}-isotopomers into equation (1), and using the definitions of δ_i and α_i from equations (3) and (4), we obtain equation (6) for the isotopomer model,

$$K(N\delta_i)'' - V(N\delta_i)' - 1000m_i(\alpha_i - 1)N - m_i\alpha_i(N\delta_i) = 0, \quad (6)$$

where the primes refer to successive differentiation with respect to depth. The differential operators in equation 6 were replaced by the Euler method of forward-difference approximations [*Cline and Kaplan*, 1975]. The isotopomeric enrichment factors were estimated by fitting the models to the observed isotopomer ratios.

2.4. Interpreting Origins of N₂O From Isotopomer Analysis

[13] When interpreting N₂O isotopomer ratios of ($\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{18}O$) quantitatively, it is reasonable to use isotopomeric enrichment factors of (ε_{α} , ε_{β} , ε_{18O}). However, quantitative analysis of $\delta^{18}O$ -N₂O is difficult because oxygen in a substrate, nitrite, can exchange with that in water during denitrification [*Casciotti et al.*, 2002; *Shearer and Kohl*, 1988], and moreover there are no data on the isotope composition of O₂ in the ETNP and GOC sites and of $\delta^{18}O$ of nitrate in the GOC. On the other hand, the site preference of N₂O is considered to be independent of the isotope ratios of the substrate during N₂O production by nitrifiers [*Sutka et al.*, 2003] and denitrifiers [*Toyoda et al.*, 2005] is nearly constant even if the $\delta^{15}N^{\text{bulk}}$ and $\delta^{18}O$ of N₂O are changed owing to the increase of the isotope ratios

¹Auxiliary material data sets are available at ftp://ftp.agu.org/apend/jg/ 2006jg000227. Other auxiliary material files are in the HTML.

of residual substrates. Considering that SP of N₂O should not be influenced by the isotope ratio of its substrates and that $\delta^{15}N^{\text{bulk}}$ of N₂O can be interpreted using enrichment factors of bulk nitrogen, analyzing N₂O on a plot of SP versus $\delta^{15}N^{\text{bulk}}$ should have more benefit than on a plot of $\delta^{15}N^{\alpha}$ versus $\delta^{15}N^{\beta}$.

[14] Thus we demonstrate the validity of the analysis of isotopomer fractionation of N₂O reduction on the plot of SP versus $\delta^{15}N^{\text{bulk}}$ (see section II of auxiliary material Text S1 for details) and then we analyze the production processes of N₂O in the ETNP and GOC on a plot of SP versus $\delta^{15}N^{\text{bulk}}$. In the case of a one step reaction (substrate \rightarrow product), we define apparent isotopomeric fractionation factors of α -site or β -site nitrogens in N₂O following *Mariotti et al.* [1981],

$$\alpha_{\alpha} \equiv \begin{pmatrix} \frac{15R_{p}^{\alpha}}{15R_{s}^{\alpha}} \end{pmatrix}$$
(7a)

$$\alpha_{\beta} \equiv \begin{pmatrix} {}^{15}R_{p}^{\beta} \\ {}^{15}R_{s}^{\beta} \end{pmatrix}, \tag{7b}$$

where subscripts of p and s are product and substrate, respectively. When equations (3) and (5) are inserted into equations (7a) and (7b), and then the logarithm is taken, the following equations are obtained:

$$\ln\left(1+\frac{\varepsilon_{\alpha}}{1000}\right) = \ln\left(1+\frac{\delta^{15}N_p^{\alpha}}{1000}\right) - \ln\left(1+\frac{\delta^{15}N_s^{\alpha}}{1000}\right) \quad (8)$$

$$\ln\left(1+\frac{\varepsilon_{\beta}}{1000}\right) = \ln\left(1+\frac{\delta^{15}N_{p}^{\beta}}{1000}\right) - \ln\left(1+\frac{\delta^{15}N_{s}^{\beta}}{1000}\right).$$
 (9)

We define the isotopomeric enrichment factor for SP in N₂O as $\varepsilon_{\text{SP}} \equiv \varepsilon_{\alpha} - \varepsilon_{\beta}$ When the following conditions (equation (10)) can be applied, equations (8) and (9) can be combined to give equation (11),

$$\frac{\varepsilon_{\alpha}}{1000}, \frac{\varepsilon_{\beta}}{1000}, \frac{\delta^{15}N_{p}^{\alpha}}{1000}, \frac{\delta^{15}N_{p}^{\beta}}{1000}, \frac{\delta^{15}N_{s}^{\alpha}}{1000}, and \frac{\delta^{15}N_{s}^{\beta}}{1000} \ll 1$$
(10)

$$SP_p \approx SP_s + \varepsilon_{SP}.$$
 (11)

Therefore a plot of SP versus $\delta^{15}N^{\text{bulk}}$ can be substituted for a plot of $\delta^{15}N^{\alpha}$ versus $\delta^{15}N^{\beta}$ during the analysis of isotopomer effect for N₂O production and consumption.

[15] Since N₂O is an intermediate of denitrification, the isotopomer ratios of N₂O inside the cell of denitrifiers and N₂O dissolved in the water column should be different. Here we designate N₂O inside denitrifiers and in the water column as N₂O_{vivo} and N₂O_{situ}, respectively. Assuming that the flux of N₂O released from the cells of denitrifiers during denitrification (the flux from N₂O_{vivo} to N₂O_{situ}) and the consumption flux of dissolved N₂O (the flux from N₂O_{situ}) to N₂O_{vivo}) are negligible compared with the rate of denitrification (the fluxs from NO₃ to N₂O_{vivo} and N₂O_{vivo} to N₂), isotopomer ratios of N₂O released from the cell of

denitrifiers can be calculated [*Barford et al.*, 1999]. The N_2O isotopomer ratios should be controlled by production and reduction processes as follows:

$$\boldsymbol{\delta}\text{-NO}_{3}^{-} \xrightarrow{\varepsilon_{\text{NaR}}, \boldsymbol{\delta}\text{-}N_2\text{O}_{\text{D}\text{-}\text{pro}}} \boldsymbol{\delta}\text{-}N_2\text{O}_{\text{D}\text{-}\text{rel}} \xrightarrow{\varepsilon_{\text{N2OR}}, \boldsymbol{\delta}\text{-}N_{2\text{D}\text{-}\text{pro}}} \boldsymbol{\delta}\text{-}N_2, \quad (12)$$

where the bold italic symbols of ε and δ indicate the matrices of ($\delta^{15}N^{\text{bulk}}$, SP). The SP of δ -NO₃⁻ is recognized as zero for convenience. The symbols of ε_{NaR} and $\varepsilon_{\text{N2OR}}$ indicate the isotopomeric enrichment factors for nitrate reduction to N₂O and for N₂O reduction to N₂, respectively. The instantaneous products of N₂O and N₂ are expressed as δ -N₂O_{D-pro} and δ -N_{2D-pro}, respectively. *Barford et al.* [1999] suggest the following correlations under steady state:

$$\varepsilon_{\text{NaR}} = \delta - N_2 O_{\text{D-pro}} - \delta - NO_3^-, \qquad (13)$$

$$\boldsymbol{\varepsilon}_{\text{N2OR}} = \boldsymbol{\delta} \cdot N_{\text{2D-pro}} - \boldsymbol{\delta} \cdot N_{\text{2}} O_{\text{D-rel}}, \qquad (14)$$

$$\delta - N_{2D-pro} = \delta - N_2 O_{D-pro}. \tag{15}$$

Isotopomer ratios of N₂O produced by denitrifiers (δ -N₂O _{D-pro}) and N₂O released from denitrifiers (δ -N₂O _{D-rel}) are calculated from equations (13), (14), and (15) as follows:

$$\delta - N_2 O_{D-pro} = \delta - NO_3^- + \varepsilon_{NaR}$$
(16)

$$\delta - N_2 O_{D-rel} = \delta - N_2 O_{D-pro} - \varepsilon_{N2OR}.$$
 (17)

 N_2O is released by nitrifiers and denitrifiers, and simultaneously dissolved N_2O is consumed by denitrifiers, therefore the isotopomer ratios of dissolved N_2O (δ - N_2O_{situ}) can be written as follows:

$$\delta$$
-N₂O_{situ} = $t\delta$ -N₂O_{N-pro} + $(1 - t)\delta$ -N₂O_{D-rel} - $v\varepsilon_{N2OR}$, (18)

where t ($0 \le t \le 1$) is the ratio of the N₂O released from nitrifiers to the total N₂O released into the water column (abbreviated as N-ratio), δ -N₂O_{N-pro} represents the isotopomer ratios of N₂O produced by nitrifiers, and ν is an arbitrary positive quantity. Because the parameters of δ -N₂O_{situ}, δ -N₂O_{N-pro}, δ -N₂O_{D-rel}, and ε_{N2OR} are the matrixes of $\delta^{15}N^{\text{bulk}}$ and SP ($\delta^{15}N^{\text{bulk}}$, SP), ratios of N₂O released from nitrifiers and denitrifiers can be estimated on the basis of plots of SP versus $\delta^{15}N^{\text{bulk}}$ (Figure 1). The ratio t is estimated following equation (19) (see section III of auxiliary material Text S1 for the derivation of equation (19)).

$$t = \{(y_1 - y_3) - a(x_1 - x_3)\} / \{(y_1 - y_2) - a(x_1 - x_2)\}, (19)$$

where each plot is defined as follows: δ -N₂O_{D-rel} (x₁, y₁), δ -N₂O_{N-pro} (x₂, y₂), and δ -N₂O_{situ} (x₃, y₃). The constant, a, is equivalent to the slope of the regression line for N₂O reduction on the SP- δ ¹⁵N^{bluk} plot. The error of the ratio t is estimated following propagation of errors in equation (19)

Figure 1. Plots of the site preference (SP) versus $\delta^{15}N^{\text{bulk}}$ of N₂O for estimating the contribution of nitrification and denitrification as the production processes of N₂O. The t is the ratio of N₂O released from nitrifiers to the total N₂O released from both nitrifiers and denitrifiers. Each notation is defined in text (section 2.4).

using a = 1.43 \pm 0.14, which was estimated from the regression line over the depth range 400–700 m at the ETNP site.

3. Results

[16] The N₂O concentration maximum (85 nmol kg⁻¹) in the ETNP was found at the depth of 65–85 m in the oxycline (Figure 2a). Below 85 m, N₂O concentration decreased rapidly to 7.8 nmol kg⁻¹ (130 m), which is below the equilibrium concentration. The O₂ concentration was <1.5 μ mol kg⁻¹ O₂ below 100 m (Table 1). A secondary N₂O concentration maximum (56.5 nmol kg⁻¹) was observed at 800 m under suboxic conditions (2.7 μ mol kg⁻¹ O₂). These features are consistent with previous observations in the ETNP [*Cohen and Gordon*, 1978; *Nevison et al.*, 2003; *Pierotti and Rasmussen*, 1980; *Yoshinari et al.*, 1997].

[17] N₂O production is enhanced under suboxic conditions; thus N₂O should be produced at the oxycline around 75 m, where the N₂O concentration maximum formed a sharp peak in the N₂O concentration profile at the ETNP site. Potential temperature and salinity at the depth of 50-75 m plot linearly on a T-S diagram, which indicates the mixing of two water masses. Thus N₂O produced at the oxycline should diffuse to the mixed layer by vertical mixing and then be released to the troposphere by air-sea gas exchange. N₂O isotopomer ratios at the surface were similar to those of the troposphere (Figure 2b), which indicates that N₂O in the troposphere should be dissolved at least in the mixed layer. Assuming that the N₂O profile from the N₂O concentration maximum to the surface is formed by mixing of the background tropospheric N₂O and the N₂O produced at the oxycline, we can use a Keeling Plot, a plot of isotope ratios versus the reciprocal N₂O concentration (Figure 3), to estimate the isotopomer ratios of N₂O produced at the oxycline. Intercepts of regression lines estimate isotopomer ratios of a produced substance [*Pataki et al.*, 2003].

[18] The isotopomer ratios of N₂O produced at the subsurface N₂O maximum in the ETNP were 3.2 ± 0.1, 8.7 ± 0.6, -2.3 ± 0.6, 47.6 ± 0.3, and 11.0 ± 1.2‰, for $\delta^{15}N^{\text{bulk}}$, $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, δ^{18} O, and the site preference, respectively (1 σ , n = 5). The $\delta^{15}N^{\text{bulk}}$ and δ^{18} O estimates are similar to the measured subsurface values in the ETNP ($\delta^{15}N^{\text{bulk}} = 5 \pm 2\%$ and $\delta^{18}O_{\text{VSMOW}} = 50 \pm 2\%$ [*Yoshinari* et al., 1997]) and the Arabian Sea ($\delta^{15}N^{\text{bulk}} = 7 \pm 2\%$ and $\delta^{18}O_{\text{VSMOW}} = 49 \pm 2\%$ [*Yoshinari* et al., 1997]; $\delta^{15}N^{\text{bulk}} = 2 \pm 2\%$ and $\delta^{18}O_{\text{VSMOW}} = 47 \pm 6\%$ [*Naqvi* et al., 1998]). The $\delta^{15}N^{\text{bulk}}$ estimate is also similar to the $\delta^{15}N^{\text{bulk}} = 3.7\%$ [*Popp et al.*, 2002]). The remarkable consistency of the isotope ratios of N₂O strongly suggests that the production process is similar in the subsurface layer despite the large disparity in geographic regions. The consistent $\delta^{15}N$ values of the y-intercept of the Keeling Plot for such a wide range of oceanic environments is startling and further suggests uniformity in the processes that form N₂O in oceanic surface waters.

[19] At the GOC site, the suboxic interface was located at about 300 m (Figure 2d) and the N₂O concentration was highest at 700 m, well within the oxygen minimum zone $(O_2 < 1 \ \mu \text{mol kg}^{-1})$. At 700 m, site preference was high, whereas $\delta^{15}\text{N}^{\text{bulk}}$ and $\delta^{18}\text{O}$ were low, relative to those of N₂O at the suboxic interface (300 m; see Figure 2e). Incubation of sediments indicates that the dominant source of N₂O is denitrification at oxygen levels <1 μ mol kg⁻¹ [*Jørgensen et al.* [1984]. Considering the low O₂ concentration (<1 μ mol kg⁻¹) and the negative N* (Figure 2f), which is an indicator for nitrate deficit (N* = [NO₃⁻] -16 [PO₄³⁻] + 2.90 μ mol kg⁻¹ [*Deutsch et al.*, 2001]), denitrification should be the primary source of N₂O at 700 m.

4. Discussion

4.1. Nitrous Oxide Cycle in the Oxygen Minimum Zone of the ETNP

[20] At oxygen levels below 1 μ mol kg⁻¹, the consumption of N₂O by denitrification becomes the dominant process and drives N₂O concentrations below equilibrium concentrations [*Codispoti et al.*, 1992; *Prosperie et al.*, 1996; *Suntharalingam et al.*, 2000]. Actually, N₂O concentration was lower than its equilibrium concentration at the depth of 130–500 m at the ETNP site (Table 1 and Figure 2a), which indicates that N₂O reduction by denitrifiers is active. Therefore isotopomer ratios of N₂O should be affected by the isotope effect associated with N₂O reduction by denitrifiers.

tion by denitrifiers. [21] The $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{15}N^{\text{bulk}}$ of N₂O are all linearly correlated with the δ^{18} O of N₂O from 400 to 700 m (Figure 4a). Strong linear correlation between these three

Figure 2

Table 1. Concentration and Isotopomer Ratios of N₂O in the Eastern Tropical North Pacific and Gulf of California

					-15 hulls -	-15	-15 - 2	-19	
Depth, m	Sigma θ	O_2 , μ mol kg ⁻¹	N_2O , nmol kg ⁻¹	Saturation, ^a %	$\delta^{13}N^{001k}$, ‰	$\delta^{13}N^{\alpha}$, ‰	$\delta^{13}N^{\beta}$, ‰	δ^{1} °O, ‰	SP, ‰
			Eastern Trop	vical North Pacific	$(16^{\circ}N, 107^{\circ}W)$				
10	22.34	205.41	10.07	172	6.15	13.31	-1.02	46.45	14.33
25	22.42	205.49	10.37	177	6.23	12.56	-0.10	46.37	12.66
45	22.55	185.64	22.45	379	4.51	10.40	-1.38	46.87	11.78
55	23.48	105.94	52.37	810	3.75	8.92	-1.42	47.11	10.35
65	25.02	30.77	84.79	1099	3.60	9.93	-2.74	47.81	12.68
85	25.67	5.54	84.57	1009	4.62	11.44	-2.20	55.21	13.64
105	26.02	0.65	26.89	306	8.26	23.43	-6.91	78.19	30.34
120	26.12	1.41	10.58	119	9.58	29.43	-10.27	89.52	39.70
130	26.16	0.40	7.84	88	9.70	28.71	-9.30	92.26	38.01
165	26.38	0.47 ^b	6.10	66	14.37	31.96	-3.22	93.34	35.17
350	26.73	0.19	3.80	38	21.82	35.08	8.57	100.75	26.50
400	26.83	0.39	6.27	60	22.74	46.42	-0.95	105.30	47.37
500	26.96	0.76	9.82	91	18.50	40.56	-3.56	95.15	44.12
600	27.09	0.28	22.19	198	11.73	27.58	-4.12	78.19	31.70
700	27.19	0.45	47.48	411	7.85	21.47	-5.77	66.64	27.24
800	27.27	2.70	56.51	477	7.71	18.73	-3.30	59.97	22.03
1250	27.49	27.50	41.77	330	9.52	21.93	-2.89	56.51	24.82
1510	27.57	47.49	35.92	277	9.76	21.73	-2.20	56.88	23.93
1995	27.66	80.13	28.85	216	9.92	21.15	-1.32	57.06	22.47
			Gulf of G	California (26.30°N	. 110.13°W)				
5	23.38	208.81	12.19	194	6.90	14.47	-0.67	51.29	15.14
30	23.43	216.77	12.61	201	4.14	14.20	-5.92	50.42	20.12
75	24.79	67.88	34.40	459	5.70	12.15	-0.75	54.08	12.89
150	25.90	34.21	33.58	385	8.60	17.62	-0.41	55.52	18.03
300	26.38	3.05	40.54	411	10.97	19.26	2.68	62.21	16.58
405	26.59	1.22	48.20	460	9.90	20.78	-0.99	63.12	21.76
505	26.76	0.61	53.87	490	6.89	19.50	-5.72	60.34	25.23
555	26.83	0.61	58.04	517	6.55	18.78	-5.69	61.09	24.46
605	26.88	0.61	66.59	584	4.95	19.40	-9.49	58.81	28.88
705	26.94	0.61	82.17	706	1.94	16.55	-12.67	53.39	29.22
805	27.03	1.22	77.84	652	1.76	15.68	-12.17	51.88	27.85
970	27.12	2.44	75.40	614	3.62	16.30	-9.06	57.60	25.35

^aSaturation (%) = $[N_2O]_{measured}/[N_2O]_{equilibrium} \times 100$. Equilibrated concentration was calculated following *Weiss and Price* [1980]. ^bOxygen concentration was measured from a different cast with the cast of N_2O .

independent parameters ($\delta^{15}N^{bulk}$, $\delta^{18}O$, and SP) is strong evidence for either isotopomer fractionation associated with a one-step reaction or mixing of two different pools of N₂O. Since N₂O consumption is surely active at oxygen levels below 1 μ mol kg⁻¹ and mixing of waters by cross-isopycnal diffusion across 300 m is unlikely to account for the linear correlation, we suggest that the highly linear correlations between 400 and 700 m (Figure 4a) result from N₂O consumption by denitrification rather than by mixing between isotopically distinct pools of N₂O. The $\delta^{15}N^{bulk}$, $\delta^{15}N^{\alpha}$, $\delta^{18}O$, and SP of N₂O increased as N₂O concentration decreased, and the $\delta^{15}N^{\beta}$ slightly increased from 700 m to 400 m (Figures 2a and 2b). This correlation is consistent with kinetic isotope effects associated with the cleavage of the N-O bonds during N₂O reduction by denitrification [*Popp*

et al., 2002; Toyoda et al., 2002; Westley et al., 2006]. Therefore the concentration and isotopomer ratios of N₂O from 700 to 400 m suggest that the N₂O is produced in the suboxic zone (the area below 750 m, where $[O_2] \ge 1 \ \mu \text{mol} \text{ kg}^{-1}$) and then diffuses and advects into the OMZ up to 400 m, which is the strongest anoxic zone at the ETNP site on the basis of ammonium accumulation (Figure 2c).

[22] Linear correlations between δ^{18} O-N₂O and δ^{15} N^{α}-, δ^{15} N^{β}-, or δ^{15} N^{bulk}-N₂O were also observed over the depth range 65–130 m (Figure 4b). At 65 m, low δ^{15} N^{bulk}, δ^{18} O, and SP of N₂O relative to that in the troposphere can be attributed to the N₂O production under suboxic conditions. From 65 m to 130 m, oxygen concentration decreases with depth, which results in the shift of the N₂O production process from nitrification to denitrification, and the

Figure 2. Concentration and isotopomer ratios of N₂O and concentrations of O₂ and nitrogen compounds plotted versus depth in (a, b, c) the ETNP and (d, e, f) the Gulf of California. Figures 2a and 2d show N₂O concentration (open diamond), O₂ concentration (solid circle), equilibrium N₂O concentration (dashed line), salinity (solid line), and potential temperature (dotted line). Figures 2b and 2e show $\delta^{15}N^{\text{bulk}}$ (solid diamond), $\delta^{15}N^{\alpha}$ (solid square), $\delta^{15}N^{\beta}$ (solid triangle), $\delta^{18}O$ (solid circle), and ¹⁵N-site preference (solid star) of dissolved N₂O; $\delta^{15}N^{\text{bulk}}$ (open diamond), $\delta^{15}N^{\alpha}$ (open square), $\delta^{15}N^{\beta}$ (open triangle), $\delta^{18}O$ (open circle), and ¹⁵N-site preference (open star) of tropospheric N₂O [*Yoshida and Toyoda*, 2000]. Figures 2c and 2f show nitrate (solid circle), nitrite (solid diamond), and ammonia (solid triangle) concentrations, and N* (solid star). In Figure 2f, nitrate concentration and N* were calculated from the annual analyzed mean nutrient, salinity, and temperature at 26.5°N, 110.5°W [*Boyer et al.*, 2002; *Conkright et al.*, 2002; *Stephens et al.*, 2002]. All isotopic values are expressed as permil (‰) deviations from atmospheric N₂ (for nitrogen) and VSMOW (for oxygen). The equilibrium concentration of N₂O was calculated following *Weiss and Price* [1980].

Figure 3. Isotopomer ratios of N₂O versus reciprocal N₂O concentration at the ETNP site (10–65 m). The value of intercept represents isotopomer ratio of a source (i.e., an end-member). The end-member equals the isotopomer ratios of N₂O produced at the concentration maximum. Each plot represents $\delta^{15}N^{\text{bulk}}$ (open diamond), $\delta^{15}N^{\alpha}$ (open square), $\delta^{15}N^{\beta}$ (open triangle), and δ^{18} O (open circle).

increase of the ratio of N₂O reduction to its production. This suggestion is consistent with the profile of N* (Figure 2c). The value of N* decreased as depth increased to 100 m, which suggests denitrification is active at least below the depth of 100 m. Over the depth range 65–130 m, $\delta^{15}N^{\beta}$ -N₂O decreased with depth, which could be caused by production of N₂O with low $\delta^{15}N^{bulk}$ and subsequent consumption of dissolved N₂O. A decrease of $\delta^{15}N^{\beta}$ accompanied by increases of δ^{18} O and SP was also observed in the Black Sea [Westley et al., 2006]. Therefore the correlation between δ^{18} O-N₂O and δ^{15} N^{α}-, δ^{15} N^{β}-, or δ^{15} N^{bulk}-N₂O at 65–130 m should be the result of a shift in the production and consumption processes of N₂O. Potential temperature and salinity at 65-130 m follow a linear trend on a T-S diagram (data not shown), which indicates the mixing of two water masses. Therefore the good correlation between N₂O isotopomer ratios over the depth range 65 to 130 m could be attributed to mixing of water masses. (Correlation coefficient (\mathbb{R}^2) is listed in the caption of Figure 4).

4.2. Isotopomeric Enrichment Factors for N_2O Reduction

[23] If in situ production or isopycnal diffusion affects the distribution of N₂O between 400 and 700 m at the ETNP site in addition to the in situ N₂O reduction, then N₂O isotopomer ratios should plot as curves in δ^{15} N versus δ^{18} O space. The observed linear correlation between N₂O isotopomer ratios between 400 and 700 m indicates that only one of these processes affects the N₂O pool. The OMZs in the ETNP are considered as stagnant layers ventilated only by mixing with surface and deep oxygenated waters [*Wyrtki*,

1962]. Actually, distribution of N* at Sigma θ = 26.9 and 27.1, which are equivalent to ~ 450 and 600 m, respectively [*Castro et al.*, 2001], indicates that the water mass at the ETNP site is stagnant and appears to be isolated from other water masses. Therefore it is reasonable to assume that only in situ N₂O reduction affects the pool of N₂O and to analyze the N₂O isotopomer ratios between 400 to 700 m using vertical advection-diffusion-reaction models.

[24] There are several factors that could control N₂O reduction rate, such as N₂O, O₂, or nitrate concentrations, or potential denitrification activity. Oxygen and nitrate can compete with N₂O as electron accepters. However, the oxygen concentration was under 1 μ mol/kg from 400–700 m and showed no concentration gradients. Therefore it is not necessary to include O₂ concentration among the factors controlling N₂O reduction rate as a function of depth. Negative N* from 400–700 m indicates that nitrate is a competitor of N₂O over this depth interval (Figure 2c). The concentration of nitrate was approximately a thousand times higher than the N₂O concentration. Therefore N₂O constrain the N₂O reduction rate. During nitrate reduction, organic matter is thought to regulate the nitrate reduction

Figure 4. Relationship between nitrogen isotope/isotopomer ratios and oxygen isotope ratio of N₂O (a) between 400 and 700 m and (b) between 65 and 130 m at the ETNP site. Each plot represents $\delta^{15}N^{\text{bulk}}$ (open diamond), $\delta^{15}N^{\alpha}$ (open square), $\delta^{15}N^{\beta}$ (open triangle), and ^{15}N -site preference (cross). Regression lines of 400–700 m are as follows, where a cross denotes δ^{18} O and the value in parentheses is R² (n = 4): $\delta^{15}N^{\text{bulk}} = -18.21 + 0.387 \text{ X}$ (0.998), $\delta^{15}N^{\alpha} = -23.36 + 0.665 \text{ X}$ (0.995), $\delta^{15}N^{\beta} = -13.05 + 0.109 \text{ X}$ (0.890), and SP = -10.31 + 0.555 X (0.981). Regression lines of 65 - 130 m are as follows (n = 5): $\delta^{15}N^{\text{bulk}} = -3.14 + 0.142 \text{ X}$ (0.995), $\delta^{15}N^{\alpha} = -12.94 + 0.462 \text{ X}$ (0.989), $\delta^{15}N^{\beta} = 6.66 - 0.178 \text{ X}$ (0.944), and SP = -19.60 + 0.640 X (0.980).

rate because denitrification activity can be limited by the supply of electron donors (organic compounds) rather than electron accepters such as nitrate [Cline and Kaplan, 1975; Sutka et al., 2004b]. However, considering that the nitrate reduction rate is likely at least 2 orders of magnitude higher than the N₂O reduction rate, it is probable that electron donors should be sufficient for N2O reduction and that N2O reduction can be a pseudo-first-order reaction of N2O. Thus we developed the advection-diffusion-reaction model with the assumption that the N₂O reduction rate is only proportional to the concentration of N_2O (see section 2.3 for the description of the model). We also tested the advectiondiffusion-reaction model with the assumption that the N₂O reduction rate is proportional to the concentration of both N₂O and electron donors (see section I of auxiliary material Text S1). Although the second model contains large uncertainties in POC concentration, the estimated isotopomeric enrichment factors agree with those of the model based on N₂O concentration within errors.

[25] We estimated isotopomeric enrichment factors for N₂O reduction (see Table 2 and Figure 5 for the results) by applying a vertical advection-diffusion-reaction model to the N₂O concentration and isotopomer ratios over the depth range 400-700 m at the ETNP site. Current physical oceanographic theory suggests that the predominant form of ventilation in the oceans below the mixed layer is mixing along isopycnal surfaces [Ledwell et al., 1993; Luyten et al., 1983]. Enrichment factors for nitrate reduction by denitrification estimated by lateral reactiondiffusion models ($\varepsilon = -30 \pm 3\%$ [Brandes et al., 1998]; $\varepsilon = -30 \pm 7.5\%$ [Voss et al., 2001]) are identical within the range of the errors to those estimated using vertical advection-diffusion-reaction models ($\varepsilon = -30 \pm 5\%$: [Sutka et al., 2004b] [see also Cline and Kaplan, 1975]). The agreement between these results on nitrate suggests that our estimate of the enrichment factors for N₂O should be reliable in the ETNP.

[26] The enrichment factor was estimated at $-11.6 \pm$ 1.0% for the bulk (average) N, $-19.8 \pm 2.3\%$ for the center N (α -site nitrogen), $-3.4 \pm 0.3\%$ for the end N (β -site nitrogen), $-30.5 \pm 3.2\%$ for the ¹⁸O of N₂O (Table 2). The range of the enrichment factors is based on a sensitivity test (see Appendix A). Our estimated enrichment factors of bulk nitrogen and oxygen for N2O reduction are within the range of reported values (Table 2). Our enrichment factor of bulk nitrogen is similar to that of *Barford et al.* [1999] (-12.9%), which was estimated using pure cultures of a denitrifier, Paracoccus denitrificans, grown under steady state in a chemostat. Ostrom et al. [2007] also estimated the enrichment factor of bulk nitrogen, using a denitrifier, Paracoccus denitrificans, as -10.9%. The oxygen isotopic enrichment factor of our estimation is similar to that of Wahlen and Yoshinari [1985] (-37‰), which was estimated by pure cultures of a denitrifier, Paracoccus aeruginosa, grown in batch culture. The ratio of oxygen to nitrogen isotope fractionation at 400–700 m at the ETNP site ($\varepsilon_{180}/\varepsilon_{bulk-N} =$ 2.58 ± 0.08 ; see Table 2 for details) is similar to the ratios of N₂O reduction by a denitrifier, Paracoccus denitrificans $(\varepsilon_{180}/\varepsilon_{bulk-N} = 2.28 [Ostrom et al., 2007])$, and soils $(\varepsilon_{180}/\varepsilon_{bulk-N} = 2.5 [Ostrom et al., 2007], 2.51-2.56$ [Menyailo and Hungate, 2006], and 2.0 [Mandernack et al., 2000]), although soil incubation experiments give smaller enrichment factors for bulk nitrogen and oxygen. Moreover, the ratio of oxygen to nitrogen enrichment factors $(\varepsilon_{180}/\varepsilon_{\text{bulk-N}})$ at the ETNP site is also similar to the isotope fractionation observed in the ETNP $(\Delta \delta^{18} \text{O}/\Delta \delta^{15} \text{N}^{\text{bulk}} \approx 2)$ and in the Arabian Sea $(\Delta \delta^{18} \text{O}/\Delta \delta^{15} \text{N}^{\text{bulk}} \approx 3)$ [Yoshinari et al., 1997].

[27] A constant 1:1 ratio of ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ isotope fractionation in nitrate has been observed during denitrification [Durka et al., 1994; Bottcher et al., 1990; Sigman et al., 2005] and nitrate assimilation by marine phytoplankton [Granger et al., 2004]. Granger et al. [2004] suggested that total isotope fractionation in phytoplankton consists of two steps, namely reversible flow across the membrane of a cell (first step) and enzyme reaction (second step), and that isotope fractionation for diffusion of substrates into and out of a cell is negligible. The two-step model has also been suggested to explain nitrogen isotope fractionation for nitrate reduction by denitrifiers [Mariotti et al., 1982; Ostrom et al., 2002, Sigman et al., 2005, 2006]. This twostep model, which is similar to the two-step models describing carbon isotope fractionation [e.g., Laws et al., 1995], could also apply to isotopomer fractionation for N₂O reduction by denitrifiers as follows:

$$A \xrightarrow[F_{ba}, \varepsilon_{ba}]{F_{ba}, \varepsilon_{ba}} B \xrightarrow[F_{bc}, \varepsilon_{bc}]{F_{bc}, \varepsilon_{bc}} C$$
(20)

Assuming steady state, there are steady flows, F_{ab} , F_{ba} , and F_{bc} from A to B, from B to A, and from B to C, respectively. Isotopomeric enrichment factors are described as ε_{ab} , ε_{ba} , and ε_{bc} , respectively, for each step. In case of N₂O reduction, A is N₂O outside a cell, B is N₂O inside a cell, and C is the N₂ inside a cell. Then, isotopomeric enrichment factor for N₂O reduction can be calculated by the equation of *Rees* [1973],

$$\varepsilon_{\text{N2OR}} = \varepsilon_{\text{ac}} = \varepsilon_{\text{ab}} + (\varepsilon_{\text{bc}} - \varepsilon_{\text{ba}})X_{\text{b}} \qquad (0 \le X_{\text{b}} \le 1), \quad (21)$$

where $X_b = F_{ba}/F_{ab}$.

Isotope fractionations for diffusion of nitrate [*Bryan et al.*, 1983; *Granger et al.*, 2004; *Mariotti et al.*, 1982], N₂ [*Handley and Raven*, 1992], and CO₂ [*Farquhar et al.*, 1982; *O'Leary*, 1984] through the cell membrane (ε_{ab} and ε_{ba}) are thought to be negligible. Assuming that isotopomer fractionations for diffusion (ε_{ab} and ε_{ba}) of N₂O are also negligible, the ratios between isotopomeric enrichment factors for N₂O reduction are constant, even if the ratio X_b changes. The steady state denitrifier model of *Barford et al.* [1999] (see section 2.4 for details) estimates the isotopic enrichment factors for nitrogen isotopic enrichment factors estimated by *Barford et al.* [1999] (ε_{bc}) and this study (ε_{ac}) suggests that the ratio X_b at 400–700 m at the ETNP site is close to 1 (equation (21) estimates the ratio X_b.)

4.3. Estimating the Contribution of Nitrifiers and Denitrifiers to N₂O Production

[28] We analyzed the contribution of nitrifiers and denitrifiers to N₂O production at the ETNP and GOC sites using SP- δ^{15} N^{bulk} plot (see section 2.4 for description and see Figure 6

Table 2. Isotopomeric Enrichment Factors for N₂O Reduction^a

Isotopomeric enrichment factor, ‰						
$\varepsilon_{\rm bulk-N}$	ε_{lpha}	ε_{eta}	ε_{180}	$\varepsilon_{180}/\varepsilon_{bulk-N}^{b}$	Conditions	Reference
-11.6 ± 1.0	-19.8 ± 2.3	-3.4 ± 0.3	-30.5 ± 3.2	2.58 ± 0.08	eastern tropical North Pacific (advection-diffusion-reaction models)	this study (400-700 m in the ETNP)
-6.99.8			-12.624.9	2.51	incubation of soil collected under larch in Siberia	Menyailo and Hungate [2006]
-6.38.3			-16 - 21	2.55 - 2.56	incubation of soil collected under birch in Siberia	Menyailo and Hungate [2006]
-12.9°					chemostat culture of Paracoccus denitrificans	Barford et al. [1999]
-39					pure culture of Azotobacter vinelandii at 25°C ^d	Yamazaki et al. [1987]
			-42		pure culture of Pseudomonas aeruginosa at 10°C	Wahlen and Yoshinari [1985]
			-37		pure culture of Pseudomonas aeruginosa at 26°C	Wahlen and Yoshinari [1985]
-2.4			-4.9	2.0	incubation of landfill soil in ambient air at 24°C	Mandernack et al. [2000]
				~ 2	correlation between $\delta^{15} N^{\text{bulk}}$ and $\delta^{18} O$ in N ₂ O	Yoshinari et al. [1997]
				~3	dissolved in the eastern tropical North Pacific correlation between $\delta^{15}N^{bulk}$ and $\delta^{18}O$ in N ₂ O dissolved in the Arabian Sea	Yoshinari et al. [1997]

 $^{a}N_{2}O \rightarrow N_{2}.$

^bThe ratio of $\varepsilon_{180}/\varepsilon_{\text{bulk-N}}$ is equivalent to the slope of the regression line on δ^{18} O versus δ^{15} N plot (n = 4, R² = 0.998). The error of $\varepsilon_{180}/\varepsilon_{\text{bulk-N}}$ is equivalent to the error of the slope of the regression line.

^cAverage value of replicate experiments.

^d A N₂-fixing bacterium.

for the results). For the SP- δ^{15} N^{bulk} analysis, we calculated the isotopomer ratios of N₂O released by denitrifiers (δ -N₂O_{D-rel}) and adopted the reference value estimated by *Popp et al.* [2002] for the isotopomer ratios of N₂O released by nitrifiers (δ -N₂O_{N-pro}) (see Tables 3a and 3b for detail calculations). We estimated the range of nitrogen isotope ratio in nitrate in the ETNP and GOC on the basis of previous studies at the depth of

our observations (see references in Table 3a). The value of δ -N₂O_{D-rel} was calculated using equations (16) and (17), and isotopomeric enrichment factors of ε_{NaR} (NO₃⁻ \rightarrow N₂O) and $\varepsilon_{\text{N2OR}}$ (N₂O \rightarrow N₂) listed in Table 3b. Variation of δ -N₂O_{D-rel} was determined using a propagation of error calculation.

[29] There are two choices for the isotopomer ratios of N₂O produced by nitrifiers (δ -N₂O_{N-pro}): estimation based

Figure 5. (a) Concentration and (b) isotopomer ratios of N₂O at the ETNP site versus depth. Solid lines are best fit, advection-diffusion-reaction model results. Figure 5a shows observed concentration (open circle), and Figure 5 b shows $\delta^{15}N^{\text{bulk}}$ (open diamond), $\delta^{15}N^{\alpha}$ (open square), $\delta^{15}N^{\beta}$ (open triangle), and $\delta^{18}O$ (open circle) of observed N₂O. (c) N₂O reduction rates calculated by the model with different values of diffusion coefficient (K) and advection velocity (V). The values of V/K and V for each curve named in legend are listed in Table A1. The solid curve named as "Optimal-high" is the "best fit" result using the values of V/K = $-1.4 \times 10^{-3} \text{ m}^{-1}$ and V = -4.0 m yr^{-1} .

Figure 6. Plots of (a) ¹⁵N-site preference versus $\delta^{15}N^{\text{bulk}}$ and (b) $\delta^{15}N^{\text{bulk}}$ versus $\delta^{18}O$. Symbols representing the observations and previous reports are defined in legend. Figure 6a shows isotopomer ratios of N₂O produced by nitrifiers (red pentagon) and denitrifiers (open triangle), and isotopomer ratios of N₂O released from denitrifiers (solid triangle). Red dash-dotted line and blue dotted line are in parallel with the isotopomer fractionation for N₂O reduction. In Figures 6a and 6b, orange and blue numbers are the depths for each sample at the ETNP and GC sites, respectively. Black solid line and broken line are the regression lines between 400 and 700 m and between 65 and 130 m, respectively, at the ETNP site. All isotopic values are expressed as permil (‰) deviations from atmospheric N₂ (for nitrogen) and VSMOW (for oxygen).

on isotopomer analysis of N₂O produced presumably by nitrifier-denitrification in the shallow aphotic zone in the subtropical North Pacific Gyre [*Popp et al.*, 2002] or calculation using isotopomeric enrichment factors estimated from pure cultures [*Sutka et al.*, 2006, 2003,2004a]. *Sutka et al.* [2006, 2003, 2004a] found that for pure culture experiments SP of N₂O is close to 0‰ when N₂O is produced via nitrite by nitrite reductase and that SP of N₂O is around 30‰ when N₂O is produced by NH₂OH oxidation. At station ALOHA (22°45′N, 158°00′W) in the aphotic zone in the subtropical North Pacific Gyre, SP of N₂O produced in situ was estimated at ~4‰ [*Popp et al.*, 2002]. The low SP observed in this subsurface layer at station ALOHA and the ETNP site is consistent with the production of N₂O by nitrifier denitrification as observed in pure culture experiments by *Sutka et al.* [2006, 2003, 2004a]. Comparison of δ^{18} O-N₂O with δ^{18} O-O₂ also indicates the contribution of nitrifier denitrification for N₂O production at the depth of 350–500 m at station ALOHA [*Ostrom et al.*, 2000; *Popp et al.*, 2002]. However, we do not adopt the SP of 0‰ for nitrifier denitrification as the end-member of δ -N₂O_{N-pro}, because we could not exclude the possibility of contribution of NH₂OH oxidation to N₂O production in the aerobic oceans. It is also difficult to use isotopic enrichment factors for the N₂O production by nitrifiers, because there are no data for nitrogen isotope ratios of substrates available and, furthermore, calculation of the nitrogen isotopic enrichment factors is not straightforward. *Casciotti et al.* [2002] found that the extent of isotope fractionation

Table 3a. Estimates of Isotopomer Ratios of N₂O Released From Nitrifiers and Denitrifiers

Isotopomer Ratios, ‰	Symbol	$\delta^{15}N$	SP	Notes
Nitrate in the eastern tropical North Pacific and Gulf of California	δ -NO ₃ ⁻	7.5 ± 6.5	0	the eastern tropical North Pacific: <i>Brandes et al.</i> [1998], <i>Cline and Kaplan</i> [1975], <i>Sigman et al.</i> [2005], <i>Sutka et al.</i> [2004b], and <i>Voss et al.</i> [2001]; the Gulf of California: <i>Altabet et al.</i> [1999] ^a
N_2O produced by denitrifiers	δ-N ₂ O _{D-pro}	-22.5 ± 10.0	-2 ± 5^{b}	$\delta - N_2 O_{D-pro} = \delta - NO_3^- + \varepsilon_{NaR}$
N_2O released from denitrifiers	0-N ₂ O _{D-rel}	-10.9 ± 10.0	$14.4 \pm 5.5^{\circ}$	$\boldsymbol{\delta}$ -N ₂ O _{D-rel} = $\boldsymbol{\delta}$ -N _{2D-pro} – $\boldsymbol{\varepsilon}$ N _{2OR}
N ₂ O produced by nitrifiers	δ -N ₂ O _{N-pro}	4 ± 1	4 ± 4	N ₂ O produced in the subsurface layer in the subtropical North Pacific Gyre [<i>Popp et al.</i> 2002]

^a The data at the depth of 200-600 m is excluded for the eastern tropical North Pacific because nitrate at the depth should not be the substrate of the N₂O that we analyze.

^b Range of the value is calculated from propagation of errors: $\sigma(A) = [\{\sigma(B)\}^2 + \{\sigma(C)\}^2]^{(1/2)}$ when A = B + C.

Table 3b. Isotopomeric Enrichment Factors for the Calculation of N₂O Isotopomer Ratios of Sources

Isotopomeric Enrichment Factors, ‰	Symbol	$\varepsilon_{\mathrm{bulk-N}}$	$\varepsilon_{\rm SP}{}^{\rm a}$	Notes
Nitrate reduction by denitrifiers: $NO_3^- \rightarrow N_2O$	$\delta_{ m NaR}$	-30 ± 7.5	-2 ± 5	$\varepsilon_{\text{bulk-N}}$: lateral diffusion-reaction model in the ETNP [<i>Brandes et al.</i> , 1998; <i>Voss et al.</i> , 2001] and vertical advection-diffusion-reaction model in the ETNP [<i>Cline and Kaplan</i> , 1975; <i>Sutka et al.</i> , 2004b], ε_{SP} : pure culture of denitrifiers: <i>Pseudomonas chlororaphis</i> , <i>Pseudomonas aurelofaciens</i> [<i>Sutka et al.</i> , 2006], and <i>Paracoccus denitrificans</i> [<i>Toyoda et al.</i> , 2005]
N_2O reduction by denitrifiers: $N_2O \rightarrow N_2$	$\delta_{ m N2OR}$	-11.6 ± 1.0	-16.4 ± 2.3	Vertical advection-diffusion-reaction model in the ETNP (this study)

 ${}^{a}\varepsilon_{\rm SP}$ is calculated by the following equation: $\varepsilon_{\rm sp} = 2 \varepsilon_{\alpha} - 2 \varepsilon_{\rm bulk-N}$. Range of the value is calculated from propagation of errors: $\sigma(\rm SP) = \{4 \sigma(\delta^{15}N^{\alpha})^{2} + 4 \sigma(\delta^{15}N^{\rm bulk})^{2}\}^{1/2}$.

for ammonia oxidation by marine nitrifiers is about 10-25%smaller than that of a terrestrial nitrifier such as *Nitrosospira tenuis* and a well-studied nitrifier, *Nitrosomonas europaea*. Therefore, considering the difficulties in estimating the value for δ -N₂O_{N-pro} using isotopomer enrichment factors and the consistency in isotopic values observed in ocean environments, we adopt the isotopomer ratios of N₂O produced in situ in the aerobic subsurface layer in the subtropical North Pacific Gyre [*Popp et al.*, 2002] as the value of δ -N₂O_{N-pro} (Table 3a).

[30] To calculate the isotopomer ratios of N₂O released from denitrifiers (δ -N₂O_{D-rel}), we assumed that the ratio X_b in the two-step model is one. Then we applied our estimated enrichment factor $\varepsilon_{N2OR}(=\varepsilon_{ac}; N_2O_{situ} \rightarrow N_2)$ to ε_{bc} (N₂O_{vivo} \rightarrow N₂) of the steady state denitrifier model to calculate δ -N₂O_{D-rel} (Table 3b). However, even if the ratio X_b is far from one, the slope of SP to $\delta^{15}N^{bulk}$ is constant. Thus the ratio X_b should not affect the analysis of the origin of N₂O.

[31] The isotopomer ratios of N₂O at 700 m at the GOC site and at 120 m at the ETNP site plot close to the isotopomer fractionation line for N₂O reduction from δ -N₂O _{D-rel} (blue dotted line at Figure 6a), which suggests that N₂O is released from and consumed by denitrifiers in these water masses. On the contrary, the isotopomer ratios of N₂O dissolved at the N₂O concentration maximum (~65 m) at the ETNP site and the suboxic zone above the OMZ (~300 m) at the GOC site plot close to the isotopomer fractionation line of N₂O reduction from δ -N₂O _{N-pro} (red dash-dotted line at Figure 6a), which suggests that N₂O is mainly released from nitrifiers in these water masses.

[32] We estimated the contribution ratio of N_2O production by nitrifiers to the total N₂O emission (N-ratio) and its error using equation 19 and propagation of error, respectively. Quantitative analysis indicates that $71 \pm 17\%$ of the dissolved N₂O is released from nitrifiers at the subsurface N₂O maximum (at 65 m) at the ETNP site. In the suboxic zone under the core of the OMZ (at 800 m) at the ETNP site, the estimated N-ratio was $60 \pm 21\%$. Nitrifiers primarily contribute to N₂O production at 55 m at the ETNP site (Nratio = $79 \pm 15\%$), and at 75 m at the GOC site (N-ratio = $80 \pm 15\%$). The model results are consistent with the minimum SP values found at these depths, which is a signal of nitrifier-denitrification (Figures 2b and 2e), and with the nitrite concentration peak, a signal of ammonia oxidation by ammonia oxidizers (Figure 2c). N-ratios were also estimated at 92 \pm 13% and 11 \pm 43% at 300 m and 700 m at the GOC site, respectively.

[33] In order to resolve the contribution of each process more precisely, evaluation of the tropospheric N₂O is necessary in subsurface layers and aerobic waters. In contrast, in suboxic zones where N2O is produced and consumed by denitrification, the modern and preindustrial tropospheric N₂O should be consumed and thus should not influence the estimates of the N-ratio. Although there are large variations in δ^{15} N-nitrate and isotopic/isotopomeric enrichment factors (see references listed in notes in Tables 3a and 3b), we applied unique values for the endmembers, δ -N₂O_{N-pro} and δ -N₂O_{D-rel}, for estimating N-ratios using SP- δ ¹⁵N^{bulk} analysis. The large errors in N-ratios can be attributed to the wide range of the end-member values of δ -N₂O_{D-rel}. To reduce errors in δ -N₂O_{D-rel}, it is essential to constrain the error in δ^{15} N-nitrate and the nitrogen isotopic enrichment factor for nitrate reduction. Furthermore, even though we estimated errors in N-ratios, there remains additional uncertainty relating to the end-member of δ -N₂O_{N-pro}. It is essential to establish a methodology for estimating the end-member of δ -N₂O_{N-pro} in the oceans. Given the influence of diffusion and advection on the distribution of N₂O and nitrate, it is insufficient to use δ^{15} N-nitrate at each point as the substrate of N₂O. In future studies, it is desirable to estimate the N-ratio using an advection-diffusion-reaction model with distribution of isotope ratios of substrates and isotopic/isotopomeric enrichment factors, which are functions of the concentrations of substrates and environmental parameters related to microbial activities such as temperature.

[34] We also plotted the isotopomer ratios of N_2O at the concentration maximum (600 m) at Station KNOT in the western North Pacific (data for 991013 from Toyoda et al. [2002]) as the open black star on Figure 6a. Considering that δ^{15} N-NO₃⁻ in the northern part of the North Pacific is ~5‰ [Casciotti et al., 2002] and that the value of δ^{15} N-NO₃⁻ is within the range of δ^{15} N-NO₃ for the SP- δ^{15} N^{bulk} analysis $(7.5 \pm 6.5\%)$, the contribution of each process to N₂O production at Station KNOT can be resolved using a plot of SP versus $\delta^{15} N^{\text{bulk}}$ (Figure 6a). The SP- $\delta^{15} N^{\text{bulk}}$ plot indicates that denitrification dominates N2O production in the OMZ at Station KNOT in the North Pacific (N-ratio = $31 \pm$ 34%). Thus isotopomer analysis of N₂O with steady state model for denitrifiers supports the denitrification hypothesis of Yamagishi et al. [2005] and Yoshida et al. [1989]. Isotopomer analysis of N₂O has a potential to resolve the dispute between the nitrification and denitrification hypotheses for the N₂O cycle in the oceans.

[35] The production and consumption processes of N₂O indicated by the SP- δ^{15} N^{bulk} analysis are consistent with the processes indicated by N* values and the concentrations of nitrite and oxygen. However, the conventional analysis of δ^{15} N^{bulk} and δ^{18} O of N₂O at the GOC site leads to the opposite conclusion: the smaller δ^{15} N^{bulk} and δ^{18} O at 700 m than those at 300 m indicates that contribution of nitrification at 700 m is larger than that at 300 m (Figure 6b). This suggestion is not consistent with N* and O₂ concentration (Figures 2d and 2f). Therefore the analysis of bulk nitrogen and oxygen isotope ratios may not be an effective tool for resolving production processes of N₂O under suboxic conditions in the oceans. In contrast, the plot of the SP versus δ^{15} N^{bulk} is very useful for resolving production and consumption processes.

5. Conclusions and Implications

[36] In the ETNP, N₂O is mainly produced by nitrifiers at the concentration maximum (60–80 m deep) located at the subsurface oxycline. Isotopomer ratios of N₂O produced at the maximum are 3.2 ± 0.1 , 8.7 ± 0.6 , -2.3 ± 0.6 , 47.6 ± 0.3 , and $11.0 \pm 1.2\%$ (1σ , n = 5) for $\delta^{15}N^{\text{bulk}}$, $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, δ^{18} O, and ¹⁵N-site preference, respectively. At the bottom of the subsurface N₂O concentration peak, N₂O is produced and consumed by denitrifiers. At the suboxic zone under the OMZ at 800 m, N₂O is strongly consumed by denitrifiers after release by nitrifiers and denitrifiers. In the Gulf of California, N₂O is dominantly produced by nitrifiers from the subsurface to 300 m. At the N₂O concentration maximum at the lower OMZ (700 m), N₂O is produced and consumed by denitrifiers.

[37] Isotopomeric fractionation for N₂O reduction was analyzed using a one-dimensional, vertical advectiondiffusion-reaction model over the depth range 400-700 m in the ETNP OMZ, where N₂O diffuses and advects from the suboxic zone under the OMZ at 800 m and where N₂O is only consumed by denitrifiers. Isotopomeric enrichment factors for N2O reduction were estimated to be -11.6 ± 1.0 , -19.8 ± 2.3 , -3.4 ± 0.3 , and $-30.5 \pm 3.2\%$ for $\delta^{15}N^{\text{bulk}}$, $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, and δ^{18} O, respectively. Isotopomer analysis of N₂O with isotopomeric enrichment factors is a powerful tool for estimating the ratios of N₂O released from nitrifiers and denitrifiers in the oceans. Isotopomer analysis of N2O suggests that conventional bulk nitrogen and oxygen isotope ratios cannot effectively differentiate the N₂O released from denitrifiers and marine nitrifiers in the low-oxygen regions although the analysis on the plot of δ^{15} N versus δ^{18} O gives information on the extent of its consumption. Thus isotopomer analysis is a powerful tool for resolving the N₂O cycle in the oceans.

[38] Isotopomer ratios of N₂O will be a sensitive signal of N₂O reduction, namely N₂ production, by denitrification, which is the main process of N loss from the oceans. Our plot of ¹⁵N-site preference versus $\delta^{15}N^{\text{bulk}}$ indicates that water masses under suboxic conditions in the ETNP, Gulf of California, and even in the OMZ in the western North Pacific show evidence of N loss by denitrification. The suggestion of N loss from the northern Pacific Ocean is consistent with the suggestion by *Li and Peng* [2002], who

Table A1. Parameters for the Advection-Diffusion-Reaction Model

Name	10^3 V/K, m^{-1}	V, m yr^{-1}
Optimal-high	-1.4	-4.0
Optimal-low	-1.4	-2.7
Maximum	-1.0	-4.0
Minimum	-1.8	-2.7

estimated remineralization ratios in the northern Pacific from nutrient and oxygen concentrations using a three-part mixing model. They argued that the low N/P ratio for the northern Pacific basins indicates that organic nitrogen is converted partly into gaseous N_2O and N_2 through nitrification or denitrification processes in low-oxygen regions, or in the reducing microenvironments of organic matter within an oxygenated water column. N* has been used as a signal of N loss in the oceans. However, N* is affected by several factors such as nitrogen fixation, remineralization ratio of nutrients, and the amount of DON that has not been remineralized. Isotopomer analysis of N_2O will be a useful tool for resolving the distributions of water masses that have lost nitrogen by denitrification.

Appendix A: Model Parameters and Sensitivity Test

A1. Ratio of Advection Velocity to Eddy Diffusion Coefficient (V/K)

[39] We estimated the value of V/K using the one dimensional, advection-diffusion model of *Tsunogai* [1972] and *Munk* [1966] with the potential temperature from our cruise (170–810 m at the ETNP site). We selected this depth range because of a highly linear mixing line exists on a T-S diagram. The value of V/K was $-1.4 \pm 0.4 \times 10^{-3}$ m⁻¹.

A2. Advection Velocity (V)

[40] We adopt the advection velocity estimated by *Chung and Craig* [1973] using ²²⁶Ra. The velocities in the *z* direction are -2.7 m yr^{-1} for minimum and -4.0 m yr^{-1} for maximum at Station SCAN X-56 (08°07′N, 113°55′W; Bottom = 4035 m), which is close to our ETNP site (16°10′N, 106°59′W).

A3. N₂O Reduction Rate (F_z)

[41] The reaction rate constant of *m* was estimated by fitting the concentration model (equations (1) and (2)) to the measured N₂O concentration between 400 and 700 m (O₂ < 1 μ mol kg⁻¹) at the ETNP site, as shown in Figure 5a. The value of *m* was estimated to make an asymptotic curve close to 0 nmol kg⁻¹ at 0 m. Several results of the N₂O reduction rate are shown in Figure 5c.

A4. Sensitivity

[42] Sensitivity was tested to estimate the range of enrichment factors. The fractionation factor was dependent mainly on the shape of the curve fit to the N₂O concentration profile. The values of the parameters (V/K and V) were varied within their ranges to estimate errors of the fractionation factors. We used parameters of "Optimalhigh," as shown in Table A1, for estimating the optimal factors. Shifting the value of V did not change the estimated value of fractionation factors. The range of N₂O reduction rates was also estimated. Estimated profiles were shown in Figure 5c, and sets of parameters are shown in Table A1.

[43] Acknowledgments. We thank Nils Napp for dissolved O₂ measurements, and all scientists working on the EPREX for help with sample collection in the ETNP. We are indebted to A. W. Graham for dissolved O2 measurement, sample collection, and cruise information including CTD data from the Gulf of California. We wish to thank the crew of the R/V Revelle for assistance on our cruise in the ETNP, and to thank the crew of the R/V New Horizon for assistance on the cruise in the Gulf of California. We are indebted to H. Nara for advice on the advection-diffusion-reaction model and for his comments on this paper, and to T. Rust and F. J. Sansone for assistance in this research. We thank R. L. Sutka and N. E. Ostrom for interlaboratory calibration of N₂O isotopomer ratios. We also thank R. L. Sutka, J. van-Haren, L. Fariacute;as, N. Handa, J. P. Montoya, and Y. H. Li for valuable discussions. This research was supported by U.S. National Science Foundation grants OCE 9817064 (BNP, Francis J. Sansone and Edward A. Laws) and OCE 0240787 (BNP). Reviews by N. E. Ostrom and two anonymous reviewers were very helpful in improving this paper. This is SOEST contribution 7021.

References

- Altabet, M. A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez, and R. Francois (1999), The nitrogen isotope biogeochemistry of sinking particles from the margin of the eastern North Pacific, *Deep Sea Res.*, *Part I*, 46, 655–679.
- Barford, C. C., J. P. Montoya, M. A. Altabet, and R. Mitchell (1999), Steady-state nitrogen isotope effects of N₂ and N₂O production in *Paracoccus denitrificans*, *Appl. Environ. Microbiol.*, 65, 989–994.
- Bottcher, J., O. Strebel, S. Voerkelius, and H. L. Schmidt (1990), Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer, *J. Hydrol.*, *114*(3–4), 413–424.
- Boyer, T. P., C. Stephens, J. I. Antonov, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, and H. E. Garcia (2002), *World Ocean Atlas 2001*, vol. 2, *Salinity* [CD-ROM], edited by S. Levitus, *NOAA Atlas NESDIS 50*, Natl. Oceanic and Atmos. Admin., Silver Spring, Md. Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A.
- Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A. Naqvi (1998), Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles, *Limnol. Oceanogr.*, 43(7), 1680–1689.
- Brenninkmeijer, C. A. M., and T. Rockmann (1999), Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis, *Rapid Commun. Mass Spectrom.*, 13(20), 2028–2033.
- Bryan, B. A., G. Shearer, J. L. Skeeters, and D. H. Kohl (1983), Variable expression of the nitrogen isotope effect associated with denitrification of nitrite, *J. Biol. Chem.*, 258(14), 8613–8617.
- Casciotti, K. L., D. M. Sigman, M. G. Hastings, J. K. Bohlke, and A. Hilkert (2002), Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, *Anal. Chem.*, 74(19), 4905–4912.
- Casciotti, K. L., D. M. Sigman, and B. B. Ward (2003), Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria, *Geomicrobiol. J.*, 20(4), 335–353.
- Castro, C. G., F. P. Chavez, and C. A. Collins (2001), Role of the California Undercurrent in the export of denitrified waters from the eastern tropical North Pacific, *Global Biogeochem. Cycles*, 15(4), 819–830.
- Chung, Y.-C., and H. Craig (1973), Radium-226 in the eastern equatorial Pacific, *Earth Planet. Sci. Lett.*, 17, 306–318.
- Cline, J. D., and I. R. Kaplan (1975), Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean, *Mar. Chem.*, 3, 271–299.
- Codispoti, L. A., J. W. Elkins, T. Yoshinari, G. Fredrich, C. Sakamoto, and T. Packard (1992), On the nitrous oxide flux from productive regions that contain low oxygen waters, in *Oceanography of the Indian Ocean*, edited by B. Desai, pp. 271–284, Oxford Univ. Press, New York.
- Cohen, Y., and L. I. Gordon (1978), Nitrous oxide production in the oxygen minimum of the eastern tropical North Pacific: Evidence for its consumption during denitrification and possible mechanisms for its production, *Deep Sea Res.*, 25, 509–524.
- Conkright, M. E., H. E. Garcia, T. D. O'Brien, R. A. Locarnini, T. P. Boyer, C. Stephens, and J. I. Antonov (2002), *World Ocean Atlas 2001*, vol. 4, *Nutrients* [CD-ROM], edited by S. Levitus, *NOAA Atlas NESDIS 52*, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
- Crutzen, P. J. (1970), The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteorol. Soc., 96, 320-325.
- Deutsch, C., A. Ganachaud, N. Gruber, R. M. Key, and J. L. Sarmiento (2001), Denitrification and N_2 fixation in the Pacific Ocean, *Global Biogeochem. Cycles*, 15(2), 483–506.

- Dore, J. E., B. N. Popp, D. M. Karl, and F. J. Sansone (1998), A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters, *Nature*, 396, 63–66.
- Durka, W., E. D. Schulze, G. Gebauer, and S. Voerkelius (1994), Effects of forest decline on uptake and leaching of deposited nitrate determined from N¹⁵ and O¹⁸ measurements, *Nature*, 372, 765–767.
- Farquhar, G. D., and J. A. Berry (1982), On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves, *Aust. J. Plant Physiol.*, 9, 121–137.
- Granger, J., D. M. Sigman, J. A. Needoba, and P. J. Harrison (2004), Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton, *Limnol. Oceanogr.*, 49(5), 1763–1773.
- Grasshoff, K., M. Ehrhardt, and K. Kremling (Eds.) (1983), *Methods of Seawater Analysis*, 2nd rev. and extended ed., pp. 61–72, 143–150, Verlag Chemie, New York.
- Gruber, N., and J. L. Sarmiento (1997), Global patterns of marine nitrogen fixation and denitrification, *Global Biogeochem. Cycles*, 11(2), 235–266.
- Handley, L. L., and J. A. Raven (1992), The use of natural abundance of nitrogen isotopes in plant physiology, *Plant Cell Environ.*, 15, 965–985.
- Intergovernmental Panel on Climate Change (2001), Atmospheric chemistry and greenhouse gases, in *Climate Change 2001: The Scientific Basis*, edited by J. T. Houghton et al., pp. 241–287, Cambridge Univ. Press, New York.
- Jones, R. D. (1991), An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters, *Limnol. Oceanogr.*, 36(4), 814–819.
- Jørgensen, K. S., H. B. Jensen, and J. Sørensen (1984), Nitrous oxide reduction from nitrification and denitrification in marine sediment at low oxygen concentrations, *Can. J. Microbiol.*, 30, 1073–1078.
- Kaiser, J., T. Röckmann, and C. A. M. Brenninkmeijer (2003), Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide, J. Geophys. Res., 108(D15), 4476, doi:10.1029/2003JD003613.
- Laws, E. A., B. N. Popp, R. R. Bidigare, M. C. Kennicutt, and S. A. Macko (1995), Dependence of phytoplankton carbon isotopic composition on growth-rate and [CO₂]_{aq}: Theoretical considerations and experimental results, *Geochim. Cosmochim. Acta*, *59*, 1131–1138.
- Ledwell, J. R., A. J. Watson, and C. S. Law (1993), Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment, *Nature*, 364, 701–703.
- Li, Y. H., and T. H. Peng (2002), Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles, *Global Biogeochem. Cycles*, *16*(4), 1130, doi:10.1029/2001GB001828.
- Luyten, J. R., J. Pedlosky, and H. Stommel (1983), The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309.
- Mandernack, K. W., T. Rahn, C. Kinney, and M. Wahlen (2000), The biogeochemical controls of the δ^{15} N and δ^{18} O of N₂O produced in land-fill cover soils, *J. Geophys. Res.*, 105(D14), 17,709–17,720.
- Mariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux (1981), Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes, *Plant Soil*, 62, 413–430.
- Mariotti, A., J. C. Germon, A. Leclerc, G. Catroux, and R. Letolle (1982), Experimental determination of kinetic isotope fractionation of nitrogen isotopes during denitrification, in *Stable Isotopes*, edited by H.-L. Schmidt et al., pp. 459–464, Elsevier, New York.
- Menyailo, O. V., and B. A. Hungate (2006), Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide, *Global Biogeochem. Cycles*, 20, GB3025, doi:10.1029/2005GB002527.
- Munk, W. H. (1966), Abyssal recipes, Deep Sea Res, 13, 707-730.
- Naqvi, S. W. A., T. Yoshinari, D. A. Jayakumar, M. A. Altabet, P. V. Narvekar, A. H. Devol, J. A. Brandes, and L. A. Codispoti (1998), Budgetary and biogeochemical implications of N₂O isotope signatures in the Arabian Sea, *Nature*, 394, 462–464.
- Nevison, C. D., R. F. Weiss, and I. D. J. Erickson (1995), Global oceanic emissions of nitrous oxide, J. Geophys. Res., 100(C8), 15,809–15,820.
- Nevison, C., J. H. Butler, and J. W. Elkins (2003), Global distribution of N₂O and the Δ N₂O-AOU yield in the subsurface ocean, *Global Biogeochem. Cycles*, 17(4), 1119, doi:10.1029/2003GB002068.
- O'Leary, M. H. (1984), Measurement of the isotope fractionation associated with diffusion of carbon-dioxide in aqueous-solution, *J. Phys. Chem.*, 88, 823–825.
- Ostrom, N. E., M. E. Russ, B. Popp, T. M. Rust, and D. M. Karl (2000), Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen, *Chemosphere Global Change Sci.*, 2(3–4), 281–290.
- Ostrom, N. E., L. O. Hedin, J. C. von Fischer, and G. P. Robertson (2002), Nitrogen transformations and NO₃⁻ removal at a soil-stream interface: A stable isotope approach, *Ecol. Appl.*, *12*(4), 1027–1043.

- Ostrom, N. E., A. Pitt, R. Sutka, P. H. Ostrom, A. S. Grandy, K. M. Huizinga, and G. P. Robertson (2007), Isotopologue effects during N₂O reduction in soils and in pure cultures of denitrifiers, *J. Geophys. Res.*, doi:10.1029/2006JG000287, in press.
- Pataki, D. E., J. R. Ehleringer, L. B. Flanagan, D. Yakir, D. R. Bowling, C. J. Still, N. Buchmann, J. O. Kaplan, and J. A. Berry (2003), The application and interpretation of Keeling plots in terrestrial carbon cycle research, *Global Biogeochem. Cycles*, 17(1), 1022, doi:10.1029/ 2001GB001850.
- Pierotti, D., and R. A. Rasmussen (1980), Nitrous oxide measurements in the eastern tropical Pacific Ocean, *Tellus*, *32*(1), 56–72.
- Popp, B. N., et al. (2002), Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N₂O in the oligotrophic subtropical North Pacific gyre, *Global Biogeochem. Cycles*, 16(4), 1064, doi:10.1029/2001GB001806.
- Poth, M., and D. D. Focht (1985), ¹⁵N kinetic analysis of N₂O production by Nitrosomonas europaea: An examination of nitrifier denitrification, *Appl. Environ. Microbiol.*, 49, 1134–1141.
- Prosperie, L. F., L. A. Codispoti, S. W. A. Naqvi, J. Aftab, D. Mastern, R. Patrick, and R. Williams (1996), Oxygen deficient (suboxic) conditions in the Arabian Sea, *Eos Trans. AGU*, 77(3), Ocean Sci. Meet. Suppl., OS11A-15.
- Ramanathan, V., R. J. Cicerone, H. B. Singh, and J. T. Kiehl (1985), Trace gas trends and their potential role in climate change, *J. Geophys. Res.*, 90(D3), 5547–5566.
- Rees, C. E. (1973), A steady-state model for sulphur isotope fractionation in bacterial reduction processes, *Geochim. Cosmochim. Acta*, 37, 1141–1162.
- Ritchie, G. A. F., and D. J. D. Nicholas (1972), Identification of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea, *Biochem. J.*, 126, 1181–1191.
- Sansone, F. J., B. N. Popp, A. Gasc, A. W. Graham, and T. M. Rust (2001), Highly elevated methane in the eastern tropical North Pacific and associated isotopically enriched fluxes to the atmosphere, *Geophys. Res. Lett.*, 28(24), 4567–4570.
- Shearer, G., and D. H. Kohl (1988), Nitrogen isotopic fractionation and ¹⁸O exchange in relation to the mechanism of denitrification of nitrite by Pseudomonas stutzeri, *J. Biol. Chem.*, *263*(26), 13,231–13,245.
- Sigman, D. M., J. Granger, P. J. DiFiore, M. M. Lehmann, R. Ho, G. Cane, and A. van Geen (2005), Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin, *Global Biogeochem. Cycles*, 19, GB4022, doi:10.1029/2005GB002458.
- Sigman, D. M., J. Granger, P. J. DiFiore, M. F. Lehmann, R. Ho, G. Cane, and A. van Geen (2006), Correction to "Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin", *Global Biogeochem. Cycles*, 20, GB1005, doi:10.1029/2005GB002682.
- Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, and H. E. Garcia (2002), *World Ocean Atlas 2001*, vol. 1, *Temperature* [CD-ROM], edited by S. Levitus, *NOAA Atlas NESDIS 49*, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
- Suntharalingam, P., and J. L. Sarmiento (2000), Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model, *Global Biogeochem. Cycles*, 14(1), 429–454.
- Suntharalingam, P., J. L. Sarmiento, and J. R. Toggweiler (2000), Global significance of nitrous-oxide production and transport from oceanic lowoxygen zones: A modeling study, *Global Biogeochem. Cycles*, 14(4), 1353–1370.
- Suthhof, A., V. Ittekkot, and B. Gaye-Haake (2001), Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N₂O and global climate, *Global Biogeochem. Cycles*, *15*(3), 637–649.
- Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2003), Nitrogen isotopomer site preference of N₂O produced by *Nitro*somonas europaea and *Methylococcus capsulatus* Bath, *Rapid Commun. Mass Spectrom.*, 17(7), 738–745.
- Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2004a), Erratum, Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath, *Rapid Commun. Mass Spectrom.*, 18(12), 1411–1412.
- Sutka, R. L., N. E. Ostrom, P. H. Ostrom, and M. S. Phanikumar (2004b), Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific Subtropical Gyre to the Eastern Tropical North Pacific, *Geochim. Cosmochim. Acta*, 68, 517–527.
- Sutka, R. L., N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li (2006), Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances, *Appl. Environ. Microbiol.*, 72, 638–644.
- Toyoda, S., and N. Yoshida (1999), Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer, *Anal. Chem.*, *71*(20), 4711–4718.

- Toyoda, S., N. Yoshida, T. Miwa, Y. Matsui, H. Yamagishi, U. Tsunogai, Y. Nojiri, and N. Tsurushima (2002), Production mechanism and global budget of N₂O inferred from its isotopomers in the western North Pacific, *Geophys. Res. Lett.*, 29(3), 1037, doi:10.1029/2001GL014311.
- Toyoda, S., H. Mutobe, H. Yamagishi, N. Yoshida, and Y. Tanji (2005), Fractionation of N₂O isotopomers during production by denitrifier, *Soil Biol. Biochem.*, *37*(8), 1535–1545, doi:10.1016/j.soilbio.2005.01.009.
- Tsunogai, S. (1972), An estimate of the vertical diffusivity of the deep water., J. Oceanogr. Soc. Jpn., 28, 145–152.
- Voss, M., J. W. Dippner, and J. P. Montoya (2001), Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean, *Deep Sea Res.*, Part I, 48, 1905–1921.
- Wahlen, M., and T. Yoshinari (1985), Oxygen isotope ratios in N₂O from different environments, *Nature*, 313, 780–782.
- Weiss, R. F., and B. A. Price (1980), Nitrous oxide solubility in water and seawater, *Mar. Chem.*, *8*, 347–359.
- Westley, M. B., B. N. Popp, T. M. Rust, and F. J. Sansone (2001), Sources and isotopic compositions of nitrous oxide in the subtropical North Pacific and the eastern tropical North Pacific, in *Proceedings of the First International Symposium on Isotopomers*, edited by N. Yoshida, pp. 169–175, Jpn. Sci. and Technol. Agency, Yokohama, Japan.
- Westley, M. B., H. Yamagishi, B. N. Popp, and N. Yoshida (2006), Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions, *Deep Sea Res.*, *Part*, 53, 1802, doi:10.1016/j.dsr2.2006.03.012.
- Wrage, N., G. L. Velthof, M. L. van Beusichem, and O. Oenema (2001), Role of nitrifier denitrification in the production of nitrous oxide, *Soil Biol. Biochem.*, 33(12–13), 1723–1732.
- Wyrtki, K. (1962), The oxygen minima in relation to ocean circulation, *Deep Sea Res.*, 9, 11–23.
 Yamagishi, H., N. Yoshida, S. Toyoda, B. N. Popp, M. B. Westley, and
- Yamagishi, H., N. Yoshida, S. Toyoda, B. N. Popp, M. B. Westley, and S. Watanabe (2005), Contributions of denitrification and mixing on the distribution of nitrous oxide in the North Pacific, *Geophys. Res. Lett.*, 32, L04603, doi:10.1029/2004GL021458.
- Yamazaki, T., N. Yoshida, E. Wada, and S. Matsuo (1987), N₂O reduction by Azotobacter vinelandii with emphasis on kinetic nitrogen isotope effects, *Plant Cell Physiol.*, 28, 263–271.
- Yoshida, N., and S. Toyoda (2000), Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers, *Nature*, *405*, 330–334.
- Yoshida, N., E. Wada, A. Hattori, T. Saino, and S. Matsuo (1984), $^{15}N/^{14}N$ ratio of dissolved N₂O in the eastern tropical Pacific Ocean, *Nature*, 307, 442–444.
- Yoshida, N., H. Morimoto, M. Hirano, I. Koike, S. Matsuo, E. Wada, T. Saino, and A. Hattori (1989), Nitrification rates and ¹⁵N abundances of N₂O and NO₃⁻ in the western North Pacific, *Nature*, 342, 895–897.
- Yoshinari, T., M. A. Altabet, S. W. A. Naqvi, L. Codispoti, A. Jayakumar, M. Kuhland, and A. Devol (1997), Nitrogen and oxygen isotopic composition of N₂O from suboxic waters of the eastern tropical North Pacific and the Arabian Sea – measurement by continuous-flow isotope-ratio monitoring, *Mar. Chem.*, 56, 253–264.

B. N. Popp, Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA. (popp@hawaii.edu)

S. Toyoda, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail-Box G1-17, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan. (toyoda.s.aa@m.titech.ac.jp)

S. Watanabe, Mutsu Institute for Oceanography, Japan Agency for Marine-Earth Science and Technology, 690 Kitasekine, Sekine, Mutsu 035-0022, Japan. (swata@jamstec.go.jp)

M. B. Westley, Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 201 Forrestal Road, Princeton, NJ 08540-6649, USA. (marian.westley@noaa.gov)

H. Yamagishi, Atmospheric Environmental Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. (yamagishi.hiroaki@nies.go.jp)

Y. Yamanaka, Faculty of Environmental Earth Science, Hokkaido University, N10W5, Sapporo, Hokkaido 060-0810, Japan. (galapen@ees. hokudai.ac.jp)

N. Yoshida, Frontier Collaborative Research Center, Tokyo Institute of Technology, G1-25, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan. (naoyoshi@depe.titech.ac.jp)

K. Koba, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-city, Tokyo 1838-509, Japan. (keikoba@cc.tuat.ac.jp)