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Oceans Module [goto top]

Notice: CT2011_oi does not use the climatological ocean prior discussed here. After we released
CarbonTracker 2011, a significant bug was discovered in our atmospheric transport model. We have
corrected the bug and are releasing revised results under the release name "CT2011_oi". One consequence
of this problem is that the four inversions using the climatological ocean flux prior were faulty. They have
been removed from the inversion suite in CT2011_oi. Use of the original CT2011 results is strongly
discouraged. Details can be found at this link. While it is not used in CT2011_oi, documentation regarding
the climatological ocean prior is retained here as a reference. 

1.   Introduction

The oceans play an important role in the Earth's carbon cycle. They are the largest long-‐‑term sink for
carbon and have an enormous capacity to store and redistribute CO  within the Earth system.
Oceanographers estimate that about 48% of the CO  from fossil fuel burning has been absorbed by the
ocean [Sabine et al., 2004]. The dissolution of CO  in seawater shifts the balance of the ocean carbonate
equilibrium towards a more acidic state with a lower pH. This effect is already measurable [Caldeira and
Wickett, 2003], and is expected to become an acute challenge to shell-‐‑forming organisms over the coming
decades and centuries. Although the oceans as a whole have been a relatively steady net carbon sink, CO
can also be released from oceans depending on local temperatures, biological activity, wind speeds, and
ocean circulation. These processes are all considered in CarbonTracker, since they can have significant
effects on the ocean sink. Improved estimates of the air-‐‑sea exchange of carbon in turn help us to
understand variability of both the atmospheric burden of CO  and terrestrial carbon exchange.
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Figure 1. Posterior long-‐‑term mean ocean fluxes from CarbonTracker.

The pattern of air-‐‑sea exchange of CO  averaged over the time period

indicated, as estimated by CarbonTracker. Negative fluxes (blue colors)

represent CO  uptake by the ocean, whereas positive fluxes (red colors)

indicate regions in which the ocean is a net source of CO  to the

atmosphere. Units are gC m  yr .

The initial release of CarbonTracker (2007) used climatogical estimates of CO  partial pressure in surface

waters (pCO ) from Takahashi et al. [2002] to compute a first-‐‑guess air-‐‑sea flux. This air-‐‑sea pCO

disequilibrium was modulated by a surface barometric pressure correction before being multiplied by a

gas-‐‑transfer coefficient to yield a flux. Starting with CarbonTracker 2007B and continuing through the

CT2010 release, the air-‐‑sea pCO  disequilibrium was imposed from analysis of ocean inversions ("OIF", cf.

Jacobson et al., 2007) results, with short-‐‑term flux variability derived from the atmospheric model wind

speeds via the gas transfer coefficient. The barometric pressure correction was removed so that

climatological high-‐‑ and low-‐‑pressure cells did not bias the long-‐‑term means of the first guess fluxes.

Starting with the CT2011 release, two models are used to provide prior estimates of air-‐‑sea CO  flux. The

OIF scheme provides one of these flux priors, and the other is an updated version of the Takahashi et al.

pCO  climatology.

2.   Detailed Description

Oceanic uptake of CO  in CarbonTracker is computed using air-‐‑sea differences in partial pressure of CO

inferred either from ocean inversions (called "OIF" henceforth), or from a compilation of direct

measurements of seawater pCO  (called "pCO -‐‑clim" henceforth). These air-‐‑sea partial pressure

differences are combined with a gas transfer velocity computed from wind speeds in the atmospheric

transport model to compute fluxes of carbon dioxide across the sea surface.

In either method, the first-‐‑guess fluxes have no interannual variability (IAV) other than a smooth trend.

IAV in oceanic CO  flux is due to anomalies in surface pCO , such as those that occur in the tropical

eastern Pacific during an El Niño, and to associated variability in winds, ocean circulation, and sea-‐‑surface

properties. In CarbonTracker, only the surface winds (and hence gas transfer), manifest these interannual

anomalies; the remaining IAV of flux must be inferred from atmospheric CO  signals.

In the following sections we describe the two ocean flux prior models. We then describe the air-‐‑sea gas

transfer velocity parameterization and discuss detais of the inversion methodology specific to oceanic

exchange of CO . Figures comparing the air-‐‑sea flux priors are presented in Box 1 below.

2.1   OIF: the Ocean Inversion Fluxes prior

For the OIF prior, long-‐‑term mean air-‐‑sea fluxes and the uncertainties associated with them are derived

from the ocean interior inversions reported in Jacobson et al. [2007]. These ocean inversion flux estimates

are composed of separate preindustrial (natural) and anthropogenic flux inversions based on the methods

described in Gloor et al. [2003] and biogeochemical interpretations of Gruber, Sarmiento, and Stocker

[1996]. The uptake of anthropogenic CO  by the ocean is assumed to increase in proportion to

atmospheric CO  levels, consistent with estimates from ocean carbon models.

OIF contemporary pCO  fields were computed by summing the preindustrial and anthropogenic flux

components from inversions using five different configurations of the Princeton/GFDL MOM3 ocean

general circulation model [Pacanowski and Gnanadesikan, 1998], then dividing by a gas transfer velocity
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general circulation model [Pacanowski and Gnanadesikan, 1998], then dividing by a gas transfer velocity

computed from the European Centre for Medium-‐‑Range Weather Forecasts (ECMWF) ERA40 reanalysis.

There are two small differences in first-‐‑guess fluxes in this computation from those reported in Jacobson

et al. [2007]. First, the five OIF estimates all used Takahashi et al. [2002] pCO  estimates to provide high-‐‑

resolution patterning of flux within inversion regions (the alternative "forward" model patterns were not

used). To good approximation, this choice only affects the spatial and temporal distribution of flux within

each of the 30 ocean inversion regions, not the magnitude of the estimated flux. Second, wind speed

differences between the ERA40 product used in the offline analysis and the ECMWF operational model

used in the online CarbonTracker analysis result in small deviations from the OIF estimates.

Other than the smooth trend in anthropogenic flux assumed by the OIF results, interannual variability (IAV)

in the first guess ocean flux comes entirely from wind speed effects on the gas transfer velocity. This is

because the ocean inversions retrieve only a long-‐‑term mean and smooth trend.

2.2  pCO -‐‑Clim: Takahashi et al. [2009] climatology prior

The pCO -‐‑Clim prior is derived from the Takahashi et al. [2009] climatology of seawater pCO . This

climatology was created from about 3 million direct observations of seawater pCO  around the world

between 1970 and 2007. With the exception of measurements in the Bering Sea, these observations were

all linearly extrapolated to the corresponding month of the year 2000 by assuming a constant trend of 1.5

μatm yr . This set of global monthly measurements corrected to the reference year 2000 was then

interpolated onto a regular grid using a modeled surface current field.

The Takahashi et al. [2009] product goes beyond providing this estimate of surface water pCO . They also

compute climatological air-‐‑sea exchange of CO  by using the GLOBALVIEW-‐‑CO  atmospheric carbon

dioxide product to infer air-‐‑sea ΔpCO , sea surface properties inferred from ocean climatologies, and

winds from atmospheric reanalysis to estimate gas-‐‑transfer velocity. Unlike other atmospheric analyses,

we have chosen not to use the climatological fluxes as our prior, nor to use the climatological ΔpCO .

Instead, we take only the seawater pCO  distribution from the Takahashi et al. climatology-‐‑-‐‑our

atmospheric model provides both pCO  in the air at the sea surface and the winds needed to estimate gas

transfer. Seawater pCO  is extrapolated from 2000 to the actual year of the CarbonTracker simulation

using the presumed increase of 1.5 μatm yr  at every point in the global ocean.

2.3   Gas-‐‑transfer velocity and ocean surface properties

Both priors use CO  solubilities and Schmidt numbers computed from World Ocean Atlas 2009 (WOA09)

climatological fields of sea surface temperature [Locarnini et al., 2010] and sea surface salinity [Antonov et

al., 2010] fields. Gas transfer velocity in CarbonTracker is parameterized as a quadratic function of wind

speed following Wanninkhof [1992], using the formulation for instantaneous winds. Gas exchange is

computed every 3 hours using wind speeds from the ECMWF operational model as represented by the TM5

atmospheric transport model.

Air-‐‑sea transfer is inhibited by the presence of sea ice, and for this work fluxes are scaled by the daily sea

ice fraction in each gridbox provided by the ECMWF forecast data. 

Box 1. Comparison of air-‐‑sea flux priors
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Time series of global-‐‑total ocean flux among the two priors and the CT2011 posterior. Global

CO  uptake by the ocean, expressed in PgC yr . Positive flux represents a gain of CO  to the

atmosphere, and the negative numbers here indicate that the ocean is a sink of CO . While both

priors manifest similar trends of increasing oceanic uptake of CO , the OIF prior (in green) has more

oceanic uptake and a greater annual cycle than the pCO -‐‑clim prior (in tan). The CT2011 across-‐‑

model posterior estimate is shown in black for comparison. 

Differences in long-‐‑term mean ocean fluxes between the two priors. Red indicates areas where

the pCO -‐‑clim prior has less oceanic uptake (or more outgassing to the atmosphere) than the OIF

prior, and blue represents the opposite. Units are gC m  yr .

2.4.   Specifics of the Inversion Methodology Specific to Air-‐‑sea CO  Fluxes

The first-‐‑guess fluxes described here are subject to scaling during the CarbonTracker optimization

process, in which atmospheric CO  mole fraction observations are combined with transport simulated by

the atmospheric model to infer flux signals. Prior air-‐‑sea fluxes are adjusted within each of of the 30

ocean inversion regions. In this process, signals of terrestrial flux in atmospheric CO  distribution can be

erroneously interpreted as being caused by oceanic fluxes. This flux "aliasing" or "leakage" is evident in

some regions as a change in the shape of the seasonal cycle of air-‐‑sea flux.

Prior uncertainties for the OIF and pCO -‐‑clim models are specified as uncertainties on scaling factors

multiplying net CO  flux in each of the 30 ocean inversion regions. The pCO -‐‑clim prior has independent

regional uncertainties (a diagonal prior covariance matrix), with the uncertainty standard deviation on each

region set to 40%. The OIF prior uncertainty has a fully-‐‑covariate covariance matrix with off-‐‑diagonal

elements representing the results of the ocean inversion of Jacobson et al. [2007]. The pre-‐‑industrial flux

uncertainty is time-‐‑indepedendent, but the anthropogenic flux uncertainty grows in time as anthropogenic

flux uptake increases. The latter is scaled to the simulation date, then added to the former. Total

uncertainties are consistent with the Jacobson et al. [2007] results.
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Terrestrial Biosphere Module [goto top]
1.   Introduction
The biospheric component of the terrrestrial carbon cycle consists of all the carbon stored in 'biomass'
around us. This includes trees, shrubs, grasses, carbon within soils, dead wood, and leaf litter. Such
reservoirs of carbon can exchange CO  with the atmosphere. Exchange starts when plants take up CO
during their growing season through the process called photosynthesis (uptake). Most of this carbon is
released back to the atmosphere throughout the year through a process called respiration (release). This
includes both the decay of dead wood and litter and the metabolic respiration of living plants. Of course,
plants can also return carbon to the atmosphere when they burn, as described our fire emissions module
documentation. Even though the yearly sum of uptake and release of carbon amounts to a relatively small
number (a few petagrams (one Pg=10  g)) of carbon per year, the flow of carbon each way is as large as
120 PgC each year. This is why the net result of these flows needs to be monitored in a system such as
ours. It is also the reason we need a good physical description (model) of these flows of carbon. After all,

from the atmospheric measurements we can only see the small net sum of the large two-‐‑way streams
(gross fluxes). Information on what the biospheric fluxes are doing in each season, and in every location
on Earth is derived from a specialized biosphere model, and fed into our system as a first guess, to be
refined by our assimilation procedure.

2.   Detailed Description
The biosphere model currently used in CarbonTracker is the Carnegie-‐‑Ames Stanford Approach (CASA)
biogeochemical model. This model calculates global carbon fluxes using input from weather models to
drive biophysical processes, as well as satellite observed Normalized Difference Vegetation Index (NDVI) to
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drive biophysical processes, as well as satellite observed Normalized Difference Vegetation Index (NDVI) to
track plant phenology. The version of CASA model output used so far was driven by year specific weather
and satellite observations, and including the effects of fires on photosynthesis and respiration (see van der
Werf et al., [2006] and Giglio et al., [2006]). This simulation gives 0.5° x 0.5° global fluxes on a monthly
time resolution.

Net Ecosystem Exchange (NEE) is re-‐‑created from the monthly mean CASA Net Primary Production (NPP)
and ecosystem respiration (R ). Higher frequency variations (diurnal, synoptic) are added to Gross Primary
Production (GPP=2*NPP) and R (=NEE-‐‑GPP) fluxes every 3 hours using a simple temperature Q
relationship assuming a global Q  value of 1.5 for respiration, and a linear scaling of photosynthesis with
solar radiation. The procedure is very similar, but NOT identical to the procedure in Olsen and Randerson
[2004] and based on ECMWF analyzed meteorology. Note that the introduction of 3-‐‑hourly variability
conserves the monthly mean NEE from the CASA model. Instantaneous NEE for each 3-‐‑hour interval is thus
created as:

NEE(t) = GPP(I, t) + R (T, t)

GPP(t) = I(t) * (∑(GPP) / ∑(I))

R (t) = Q (t) * (∑(R ) / ∑(Q ))

Q (t) = 1.5( )

where T=2 meter temperature, I=incoming solar radiation, t=time, and summations are done over one
month in time, per gridbox. The instantaneous fluxes yielded realistic diurnal cycles when used in the
TransCom Continuous experiment. 
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Fig 1. Map of optimized global biosphere fluxes. The pattern
of net ecosystem exchange (NEE) of CO  of the land biosphere
averaged over the time period indicated, as estimated by
CarbonTracker. This NEE represents land-‐‑to-‐‑atmosphere
carbon exchange from photosynthesis and respiration in
terrestrial ecosystems, and a contribution from fires. It does not
include fossil fuel emissions. Negative fluxes (blue colors)
represent CO  uptake by the land biosphere, whereas positive
fluxes (red colors) indicate regions in which the land biosphere
is a net source of CO  to the atmosphere. Units are gC m  yr .

CarbonTracker uses fluxes from CASA runs for the GFED project as its first guess for terrestrial biosphere
fluxes. We have found a significantly better match to observations when using this output compared to the
fluxes from a neutral biosphere simulation. Prior to CT2010, we used version 2 of the CASA-‐‑GFED model,
which is driven by AVHRR NDVI, scaled to represent MODIS fPAR. Recently the GFED team has transitioned
to version 3.1 of their model, driven directly by MODIS fPAR. We have found that the newer CASA-‐‑GFEDv3
product has a smaller seasonal cycle than the older CASA-‐‑GFEDv2.

The record of atmospheric CO  calls for a deeper terrestrial biosphere sink than that generally simulated
by forward models like CASA-‐‑GFED. This is manifested by a larger annual cycle of terrestrial biosphere
fluxes, and in particular a deeper boreal summer uptake of carbon dioxide, in the posterior optimized
fluxes compared to the prior models (See Box 1). We call upon the atmospheric CO  observations to make
this change, and in order to handle these prior model differences the ensemble Kalman filter's prior
covariance model has been re-‐‑tuned. In short, this prior uncertainty needs to comfortably span differences
among the terrestrial biosphere priors, the fossil fuel emissions priors, and adjustments to fluxes required
to bring model predictions into agreement with observations. As a result, the land biosphere prior
uncertainty has been doubled in CT2011 in comparison to previous releases. Details can be found on the
assimilation scheme documentation page.

Box 1. Comparison of terrestrial biosphere flux priors
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Time series of global-‐‑total terrestrial biosphere flux between the two priors and the CT2011
posterior. Global CO  uptake by the land biosphere, expressed in PgC yr , excluding emissions by

wildfire. Positive flux represents emission of CO  to the atmosphere, and the negative fluxes indicate

times when the land biosphere is a sink of CO . While both priors manifest similar annual cycles of

uptake in boreal summer balanced by emission in boreal winter, the GFED3 prior (tan) has an annual

cycle that is about 10% smaller than that of GFED2 (green). Optimization against atmospheric CO

data requires a larger land sink than in either prior, which effectively requires a deeper annual cycle.

This is shown by the CT2011 posterior (black). 

Differences in long-‐‑term mean terrestrial biosphere fluxes between the two priors. Red

indicates areas where the GFED3 prior has less terrestrial uptake (or more outgassing to the

atmosphere) than the GFED2 prior, and blue represents the opposite. Units are gC m  yr .

Unlike CT2010, CarbonTracker 2011 is a full reanalysis of the 2000-‐‑2010 period using new fossil fuel

emissions, CASA-‐‑GFEDv3 fire emissions, and first-‐‑guess biosphere model fluxes derived from CASA-‐‑

GFEDv2 for 4 of our inversions, and from CASA-‐‑GFEDv3 for the remaining 4 inversions.

Due to the inclusion of fires, inter-‐‑annual variability in weather and NDVI (or fPAR), the fluxes for North

America start with a small net flux even when no assimilation is done. This flux ranges from 0.05 PgC yr

of release, to 0.15 PgC yr  of uptake.

3.   Further Reading

CASA with fires model overview

CASA results from Jim Randerson

GFED2 results from Guido van der Werf, Jim Randerson, and colleagues

Olsen and Randerson, paper

Giglio et al., 2006 paper
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Giglio et al., 2006 paper
van der Werf et al., 2006 paper

Fire Module [goto top]
1.   Introduction

Vegetation fires are an important part of the carbon cycle and have been so for many millennia. Even
before human civilization began to use fires to clear land for agricultural purposes, most ecosystems were

subject to natural wildfires that would rejuvenate old forests and bring important minerals to the soils.
When fires consume part of the landscape in either controlled or natural burning, carbon dioxide (amongst
many other gases and aerosols) is released in large quantities. Each year, vegetation fires emit around 2
PgC as CO  into the atmosphere, mostly in the tropics. Currently, a large fraction of these fires is started
by humans, and mostly intentionally to clear land for agriculture, or to re-‐‑fertilize soils before a new
growing season. This important component of the carbon cycle is monitored mostly from space, while
sophisticated 'biomass burning' models are used to estimate the amount of CO  emitted by each fire. Such
estimates are then used in CarbonTracker to prescribe the emissions, without further refinement by our
measurements.

2.   Detailed Description

The fire module currently used in CarbonTracker is based on the Global Fire Emissions Database (GFED),
which uses the CASA biogeochemical model as described in the terrestrial biosphere model documentation
to estimate the carbon fuel in various biomass pools. The dataset consists of 1° x 1° gridded monthly
burned area, fuel loads, combustion completeness, and fire emissions (Carbon, CO , CO, CH , NMHC, H ,
NO , N O, PM2.5, Total Particulate Matter, Total Carbon, Organic Carbon, Black Carbon) for the time
period spanning January 1997 -‐‑ December 2009, of which we currently only use CO .

In 2010, the GFED team switched the satellite product driving the CASA terrestrial productivity submodel
from AVHRR NDVI to the MODIS fPAR product. For CT2011, we use fire emissions from the fPAR-‐‑driven
GFED 3.1 for the entire simulation period of 2000-‐‑2010.

The GFED burned area is based on MODIS satellite observations of fire counts. These, together with
detailed vegetation cover information and a set of vegetation specific scaling factors, allow predictions of
burned area over the time span that active fire counts from MODIS are available. The relationship between
fire counts and burned area is derived, for the specific vegetation types, from a 'calibration' subset of
500m resolution burned area from MODIS in the period 2001-‐‑2004.

Once burned area has been estimated globally, emissions of trace gases are calculated using the CASA
biosphere model. The seasonally changing vegetation and soil biomass stocks in the CASA model are
combusted based on the burned area estimate, and converted to atmospheric trace gases using estimates
of fuel loads, combustion completeness, and burning efficiency.

3.   Further Reading

CASA with fires model overview
CASA results from Jim Randerson
GFED2 results from Guido van der Werf, Jim Randerson, and colleagues
Giglio et al., 2006 paper
Interannual variability in global biomass burning emissions from 1997 to 2004, G. R. van der Werf,
J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr., Atmospheric
Chemistry and Physics 6: 3423-‐‑3441 Aug 21 2006.

Observations [goto top]
1.   Introduction

The observations of CO  mole fraction by NOAA ESRL and partner laboratories are at the heart of
CarbonTracker. They inform us on changes in the carbon cycle, whether they are regular (such as the
seasonal growth and decay of leaves and trees), or irregular (such as the release of tons of carbon by a
wildfire). The results in CarbonTracker depend directly on the quality, amount and location of observations
available, and the degree of detail at which we can monitor the carbon cycle reliably increases strongly
with the density of our observing network.
2.   Detailed Description

This study uses measurements of air samples collected at surface sites in the NOAA ESRL Cooperative
Global Air Sampling Network, the CSIRO Air Sampling Network and the IPEN-‐‑CQMA sampling program
where available, except those flagged for analysis or sampling problems, or those thought to be
influenced by local sources. The sites for which data are available thus varies each week depending on
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influenced by local sources. The sites for which data are available thus varies each week depending on

successful sampling and analysis, and each site's sampling frequency. In addition, we use in situ quasi-‐‑

continuous CO  time series from the following towers:

the 107m level of the AMT tower in Argyle, Maine

the 300m level of the BAO tower in Boulder, Colorado

the 396m level of the LEF tower in Park Falls, Wisconsin

the 305m level of the SCT tower in Beech Island, South Carolina

the 17m level of the SNP tower in Shenandoah National Park, Virginia

the 379m level of the WBI tower in West Branch, Iowa

the 483m level of the WGC tower in Walnut Grove, California

the 457m level of the WKT tower in Moody, Texas

the 30m level of the tower at Candle Lake (CDL, formerly Old Black Spruce),

Saskatchewan, Canada operated by Environment Canada (EC);

the 105m level of the tower in East Trout Lake, Saskatchewan, Canada (ETL) operated by

EC

the 40m level of the tower in Fraserdale, Ontario, Canada (FRD) operated by EC

the 10m level of the tower in Lac Labiche, Alberta, Canada (LLB) operated by EC

the 60m level of the tower at the Atmospheric Radiation and Monitoring (ARM) Carbon

Project Southern Great Plains, Oklahoma site (SGP) operated by Lawrence Berkeley

National Laboratory (LBNL).
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Other in situ quasi-‐‑continuous CO  time series used are from the NOAA ESRL observatories at Barrow

(BRW), Mauna Loa (MLO), Samoa (SMO), and South Pole (SPO); the EC Canadian sites at Alert, Nunavut

(ALT), Sable Island, Nova Scotia (SBL) and Egbert, Ontario (EGB); and the NCAR sites at Niwot Ridge,

Colorado (NWR) and Storm Peak Laboratory, Colorado (SPL). Note that all of these observations are

calibrated against the same world CO  standard (WMO-‐‑X2007). Also, note that aircraft observations from

the NOAA ESRL program were NOT assimilated, but used for independent assessment of the

CarbonTracker results.

For most of the quasi-‐‑continuous sampling sites, we construct an afternoon daytime average mole

fraction for each day from the time series, recognizing that our atmospheric transport model does not

always capture the continental nighttime stability regime while daytime well-‐‑mixed conditions are better

matched. At mountain-‐‑top sites (MLO, NWR, and SPL), we use an average of nighttime hours as this tends

to be the most stable time period and avoids periods of upslope flows that contain local vegetative and/or

anthropogenic influence. Moreover, observations at sub-‐‑daily time scales are likely to be strongly

correlated and therefore add relatively little independent information to our results.

Data from the Sutro tower (STR_01P0) and the Boulder tower (BAO_01P0, BAO_01C3) are strongly

influenced by local urban emissions, which CarbonTracker is unable to resolve. At these two sites,

pollution events have been identified using co-‐‑located measurements of carbon monoxide. In this study,

measurements thought to be affected by pollution events have been excluded. This technique is still being

developed.

Also based on Transcom continuous simulations, we decided to move a set of coastal sites by one degree

into the ocean to force the model sample to be more representative of the actual site conditions. These

sites are labeled for reference in the complete table of sites used in CarbonTracker. Table 1 summarizes

how data from the different measurement programs are preprocessed for this study.

The preprocessed data used in CarbonTracker are freely available for download. Preprocessed data are not
the original measurement data. Users are encouraged to review the literature and contact the

measurement labs directly for details about and access to the actual observations.
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Table 1: Summary of CarbonTracker data preprocessing.
Measurement Program Data Preprocessing

ESRL discrete surface All valid  data. Multiple values from the same day and location are averaged. No sample time-‐‑of-‐‑day
restriction (see exception below).

ESRL discrete tower All valid  data. Multiple values from the same day and location are averaged. Only samples collected
between 12-‐‑16 LST are considered.

ESRL observatories (BRW,
SMO, SPO) All valid  data. Day average using 12-‐‑16 LST.

ESRL observatories (MLO) All valid  data. Day average using 0-‐‑4 LST.
ESRL tower sites All valid data from highest intake. Day average using 12-‐‑16 LST.
EC in situ sites All valid data from highest intake. Day average using 12-‐‑16 LST.
NCAR in situ sites All valid data from highest intake where 1σ of hourly average < 1 ppm. Day average using 0-‐‑4 LST.

CSIRO discrete surface All valid  data. Multiple values from the same day and location are averaged. No sample time-‐‑of-‐‑day
restriction.

IPEN discrete surface All valid  data. Multiple values from the same day and location are averaged. No sample time-‐‑of-‐‑day

restriction.
LBNL in situ site All valid data for the period 2003-‐‑2010. Day average using 14-‐‑18 LST.
In this context "Valid Data" means the observation is thought to be free of sampling and analytical problems and has not been

locally influenced.

We apply a further selection criterion during the assimilation to exclude non-‐‑marine boundary layer (MBL)
observations that are very poorly forecasted in our framework. We use the so-‐‑called model-‐‑data mismatch
in this process, which is the random error ascribed to each observation to account for measurement errors
as well as modeling errors of that observation. We interpret an observed-‐‑minus-‐‑forecasted (OmF) mole
fraction that exceeds 3 times the prescribed model-‐‑data mismatch as an indicator that our modeling
framework fails. This can happen for instance when an air sample is representative of local exchange not
captured well by our 1° x 1° fluxes, when local meteorological conditions are not captured by our offline
transport fields, but also when large-‐‑scale CO  exchange is suddenly changed (e.g. fires, pests, droughts)
to an extent that can not be accommodated by our flux modules. This last situation would imply an
important change in the carbon cycle and has to be recognized by the researchers when analyzing the
results. In accordance with the 3-‐‑sigma rejection criterion, ~2% of the observations are discarded through
this mechanism in our assimilations.

Table 2 (below) gives a summary of the observing sites used in CarbonTracker, and the performace of the
assimilation scheme at each site. These diagnostics are useful for evaluating how well CarbonTracker does
in simulating observed CO .

Table 2. Summary of Observational Sites Used in CarbonTracker. Model-‐‑data-‐‑mismatch ("r") is a value assigned to a given site
that is meant to quantify our expected ability to simulate observations there. This value is principally determined from the
limitations of the atmospheric transport model. It is part of the standard deviation used to interpret the difference between a
simulation first guess ("Hx") of an observation and the actual measured value ("z"). The other component, HPHT, is a measure of the
ability of the ensemble Kalman filter to improve its simulated value for this observation by adjusting fluxes. These elements
together form the innovation χ statistic for the site: χ = (z-‐‑Hx)/√(HPHT+r2). The innovation χ2 reported above is the mean of all
squared χ values for a given site. An average χ2 below 1.0 indicates that the √(HPHT+r2) values are too large. Conversely, values
above 1.0 mean that this standard deviation is underestimated. The bias and SE columns are statistics of the posterior residuals
(final modeled values -‐‑ measured values). The bias is the mean of these residuals; the SE is the standard error of those residuals.
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ABP_01D0 ESRL Arembepe, Bahia,
Brazil 12.77°S 38.17°W 1 102 102 0 2.50 0.06 -‐‑0.50 0.53

ABP_26D0 IPEN Arembepe, Bahia,
Brazil 12.77°S 38.17°W 1 101 101 0 2.50 0.11 -‐‑0.63 0.68

ALT_01D0 ESRL Alert, Nunavut,
Canada 82.45°N 62.51°W 200 530 530 0 1.50 0.53 0.29 0.90

1

1

1

1

1

1

1
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ALT_01D0 ESRL Canada 82.45°N 62.51°W 200 530 530 0 1.50 0.53 0.29 0.90

ALT_06C0_14LST EC Alert, Nunavut,
Canada 82.45°N 62.51°W 200 3652 3652 0 2.50 0.23 0.29 0.99

AMT_01C3_14LST ESRL Argyle, Maine,
United States 45.03°N 68.68°W 50 2272 2218 54 3.00 0.93 0.55 3.22

AMT_01P0 ESRL Argyle, Maine,
United States 45.03°N 68.68°W 50 325 310 15 3.00 1.23 0.85 3.52

ASC_01D0 ESRL Ascension Island,
United Kingdom 7.97°S 14.40°W 74 915 915 0 0.75 0.82 -‐‑0.01 0.58

ASK_01D0 ESRL Assekrem, Algeria 23.18°N 5.42°E 2728 480 480 0 1.50 0.34 0.13 0.92

AZR_01D0 ESRL Terceira Island,
Azores, Portugal

38.77°N 27.38°W 40 333 329 4 1.50 1.11 0.62 1.46

BAL_01D0 ESRL Baltic Sea, Poland 55.35°N 17.22°E 3 929 929 0 7.50 0.26 -‐‑1.09 3.90

BAO_01C3_14LST ESRL

Boulder
Atmospheric
Observatory,

Colorado, United
States

40.05°N 105.00°W 1584 964 952 12 3.00 1.00 -‐‑0.98 2.70
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BAO_01P0 ESRL

Boulder
Atmospheric
Observatory,

Colorado, United
States

40.05°N 105.00°W 1584 720 694 26 3.00 1.36 -‐‑0.97 3.42

BHD_01D0 ESRL
Baring Head
Station, New

Zealand
41.41°S 174.87°E 85 142 142 0 1.50 0.28 0.20 0.74

BKT_01D0 ESRL Bukit Kototabang,
Indonesia 0.20°S 100.32°E 864 247 247 0 7.50 0.63 4.55 3.62

BME_01D0 ESRL
St. Davids Head,
Bermuda, United

Kingdom
32.37°N 64.65°W 30 236 225 11 1.50 1.57 0.69 1.83

BMW_01D0 ESRL
Tudor Hill,

Bermuda, United
Kingdom

32.27°N 64.88°W 30 347 344 3 1.50 0.87 0.59 1.28

BRW_01C0_14LST ESRL Barrow, Alaska,
United States 71.32°N 156.61°W 11 2975 2973 2 2.50 0.23 0.07 1.04

BRW_01D0 ESRL Barrow, Alaska,
United States 71.32°N 156.61°W 11 499 497 2 1.50 0.55 -‐‑0.01 1.05

BSC_01D0 ESRL
Black Sea,
Constanta,
Romania

44.17°N 28.68°E 3 399 386 13 7.50 1.18 -‐‑5.28 7.32

CBA_01D0 ESRL Cold Bay, Alaska,
United States 55.21°N 162.72°W 21 736 702 34 1.50 1.59 -‐‑0.15 1.83

CDL_06C0_14LST EC
Candle Lake,

Saskatchewan,
Canada

53.99°N 105.12°W 600 2509 2494 15 3.00 0.59 0.24 2.15

CFA_02D0 CSIRO
Cape Ferguson,

Queensland,
Australia

19.28°S 147.06°E 2 205 205 0 2.50 0.24 -‐‑0.44 1.09
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CGO_01D0 ESRL
Cape Grim,
Tasmania,
Australia

40.68°S 144.69°E 94 404 404 0 0.75 0.16 0.07 0.28

Cape Grim,



CGO_02D0 CSIRO
Cape Grim,
Tasmania,
Australia

40.68°S 144.69°E 94 404 404 0 0.75 0.16 0.03 0.27

CHR_01D0 ESRL Christmas Island,
Republic of Kiribati 1.70°N 157.17°W 3 419 419 0 0.75 0.65 -‐‑0.38 0.47

CRZ_01D0 ESRL Crozet Island,
France 46.45°S 51.85°E 120 402 402 0 0.75 0.19 0.01 0.27

CYA_02D0 CSIRO
Casey, Antarctica,

Australia 66.28°S 110.52°E 51 200 200 0 0.75 0.30 -‐‑0.21 0.27

EGB_06C0_14LST EC Egbert, Ontario,
Canada 44.23°N 79.78°W 251 1959 1845 114 3.00 1.80 0.29 4.30

EIC_01D0 ESRL Easter Island, Chile 27.15°S 109.45°W 50 288 288 0 7.50 0.03 0.87 0.93

ETL_06C0_14LST EC
East Trout Lake,
Saskatchewan,

Canada
54.35°N 104.98°W 492 1865 1857 8 3.00 0.57 0.13 2.01

FSD_06C0_14LST EC Fraserdale, Canada 49.88°N 81.57°W 210 3605 3579 26 3.00 0.56 0.19 2.57

GMI_01D0 ESRL Mariana Islands,
Guam 13.43°N 144.78°E 3 723 723 0 1.50 0.37 -‐‑0.03 0.90

HBA_01D0 ESRL
Halley Station,

Antarctica, United
Kingdom

75.58°S 26.50°W 30 486 486 0 0.75 0.15 -‐‑0.02 0.20
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HPB_01D0 ESRL Hohenpeissenberg,
Germany 47.80°N 11.01°E 985 210 206 4 7.50 0.74 2.70 5.83

HUN_01D0 ESRL Hegyhatsal,
Hungary 46.95°N 16.65°E 248 510 509 1 7.50 0.35 -‐‑0.12 4.37

ICE_01D0 ESRL
Storhofdi,

Vestmannaeyjar,
Iceland

63.40°N 20.29°W 118 486 482 4 1.50 0.55 -‐‑0.02 1.07

KEY_01D0 ESRL
Key Biscayne,
Florida, United

States
25.67°N 80.16°W 3 347 346 1 2.50 0.26 0.20 1.40

KUM_01D0 ESRL
Cape Kumukahi,
Hawaii, United

States
19.52°N 154.82°W 3 638 638 0 1.50 0.34 -‐‑0.02 0.95

KZD_01D0 ESRL Sary Taukum,
Kazakhstan 44.06°N 76.82°E 601 441 438 3 2.50 0.63 0.49 3.21

KZM_01D0 ESRL Plateau Assy,
Kazakhstan 43.25°N 77.88°E 2519 393 388 5 2.50 0.94 0.55 2.28

LEF_01C3_14LST ESRL
Park Falls,

Wisconsin, United
States

45.95°N 90.27°W 472 3489 3412 77 3.00 0.87 0.25 2.85

LEF_01P0 ESRL
Park Falls,

Wisconsin, United
States

45.95°N 90.27°W 472 1350 1296 54 3.00 1.28 0.39 3.29

LLB_06C0_14LST EC Lac La Biche,
Alberta, Canada 54.95°N 112.45°W 540 1225 1172 53 3.00 1.66 0.19 3.76

LMP_01D0 ESRL Lampedusa, Italy 35.52°N 12.62°E 45 200 193 7 1.50 1.38 0.64 1.45
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MAA_02D0 CSIRO
Mawson Station,

Antarctica,
Australia

67.62°S 62.87°E 32 206 206 0 0.75 0.26 -‐‑0.17 0.26

MHD_01D0 ESRL Mace Head, County
Galway, Ireland 53.33°N 9.90°W 5 407 407 0 2.50 0.18 0.09 1.06



Galway, Ireland

MID_01D0 ESRL
Sand Island,

Midway, United
States

28.21°N 177.38°W 4 497 496 1 1.50 0.61 0.52 1.12

MKN_01D0 ESRL Mt. Kenya, Kenya 0.05°S 37.30°E 3897 134 134 0 2.50 1.12 1.85 1.89

MLO_01C0_02LST ESRL Mauna Loa, Hawaii,
United States 19.54°N 155.58°W 3397 3342 3342 0 0.75 0.76 0.18 0.63

MLO_01D0 ESRL Mauna Loa, Hawaii,
United States 19.54°N 155.58°W 3397 566 566 0 1.50 0.22 0.13 0.68

MQA_02D0 CSIRO Macquarie Island,
Australia 54.48°S 158.97°E 12 265 265 0 0.75 0.28 0.05 0.33

NMB_01D0 ESRL Gobabeb, Namibia 23.58°S 15.03°E 456 161 161 0 2.50 0.14 0.04 0.91

NWR_01D0 ESRL
Niwot Ridge,

Colorado, United
States

40.05°N 105.58°W 3523 495 491 4 1.50 0.66 0.40 1.38

NWR_03C0_02LST NCAR
Niwot Ridge,

Colorado, United
States

40.05°N 105.58°W 3523 1550 1549 1 3.00 0.25 -‐‑0.36 1.32

OBN_01D0 ESRL Obninsk, Russia 55.11°N 36.60°E 183 155 151 4 7.50 0.97 -‐‑1.16 8.26
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OXK_01D0 ESRL Ochsenkopf,
Germany 50.03°N 11.80°E 1022 163 148 15 2.50 2.09 -‐‑0.31 3.62

PAL_01D0 ESRL
Pallas-‐‑

Sammaltunturi,
GAW Station,

Finland
67.97°N 24.12°E 560 373 372 1 2.50 0.56 -‐‑0.12 1.89

POC_01D1 ESRL Pacific Ocean, N/A 0.39°S 132.32°W 10 2043 2042 1 0.75 0.78 -‐‑0.01 0.63

PSA_01D0 ESRL
Palmer Station,

Antarctica, United
States

64.92°S 64.00°W 10 529 529 0 0.75 0.26 -‐‑0.09 0.27

PTA_01D0 ESRL
Point Arena,

California, United
States

38.95°N 123.74°W 17 381 381 0 7.50 0.43 -‐‑2.75 4.06

RPB_01D0 ESRL
Ragged Point,

Barbados 13.17°N 59.43°W 45 499 499 0 1.50 0.47 0.21 1.09

SCT_01C3_14LST ESRL
Beech Island,

South Carolina,
United States

33.41°N 81.83°W 115 675 667 8 3.00 1.00 0.08 2.94

SEY_01D0 ESRL Mahe Island,
Seychelles 4.67°S 55.17°E 3 481 481 0 0.75 1.07 0.06 0.72

SGP_01D0 ESRL
Southern Great

Plains, Oklahoma,
United States

36.80°N 97.50°W 314 407 388 19 2.50 1.42 -‐‑0.54 3.06

SGP_64C3_16LST LBNL
Southern Great

Plains, Oklahoma,
United States

36.80°N 97.50°W 314 2625 2565 60 3.00 1.08 0.07 3.23

SHM_01D0 ESRL
Shemya Island,
Alaska, United

States
52.72°N 174.10°E 40 383 383 0 2.50 0.72 -‐‑0.03 2.01
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SIS_02D0 CSIRO Shetland Islands,
Scotland 60.17°N 1.17°W 30 88 88 0 2.50 0.41 0.74 1.31

SMO_01C0_14LST ESRL Tutuila, American
Samoa 14.25°S 170.56°W 42 3446 3446 0 0.75 0.49 0.16 0.50



Samoa

SMO_01D0 ESRL Tutuila, American
Samoa 14.25°S 170.56°W 42 559 559 0 1.50 0.12 0.10 0.52

SNP_01C3_02LST ESRL
Shenandoah

National Park,
United States

38.62°N 78.35°W 1008 716 696 20 3.00 1.13 -‐‑0.40 3.14

SPL_03C0_02LST NCAR
Storm Peak

Laboratory (Desert
Research Institute),

United States
40.45°N 106.73°W 3210 1543 1540 3 3.00 0.44 -‐‑0.52 1.75

SPO_01C0_14LST ESRL
South Pole,

Antarctica, United
States

89.98°S 24.80°W 2810 3882 3882 0 0.75 0.09 0.03 0.19

SPO_01D0 ESRL
South Pole,

Antarctica, United
States

89.98°S 24.80°W 2810 533 533 0 1.50 0.02 0.09 0.20

STM_01D0 ESRL Ocean Station M,
Norway 66.00°N 2.00°E 0 850 847 3 1.50 0.55 0.18 1.06

STR_01P0 ESRL
Sutro Tower, San

Francisco,
California, United

States
37.76°N 122.45°W 254 642 632 10 3.00 0.64 0.08 2.55

SUM_01D0 ESRL Summit, Greenland 72.58°N 38.48°W 3238 430 430 0 1.50 0.43 0.32 0.90

SYO_01D0 ESRL Syowa Station,
Antarctica, Japan 69.00°S 39.58°E 11 255 255 0 0.75 0.22 -‐‑0.14 0.24
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TAP_01D0 ESRL Tae-‐‑ahn Peninsula,
Republic of Korea 36.73°N 126.13°E 20 383 383 0 7.50 0.40 0.60 4.33

TDF_01D0 ESRL Tierra Del Fuego,
Ushuaia, Argentina 54.87°S 68.48°W 20 192 192 0 0.75 0.44 -‐‑0.19 0.40

THD_01D0 ESRL
Trinidad Head,

California, United
States

41.05°N 124.15°W 107 369 324 45 2.50 3.25 -‐‑2.39 3.83

UTA_01D0 ESRL
Wendover, Utah,

United States 39.90°N 113.72°W 1320 472 471 1 2.50 0.39 0.45 1.82

UUM_01D0 ESRL Ulaan Uul,
Mongolia 44.45°N 111.10°E 914 509 501 8 2.50 0.81 -‐‑0.21 2.60

WBI_01C3_14LST ESRL West Branch, Iowa,
United States 41.72°N 91.35°W 242 1197 1134 63 3.00 1.81 0.37 3.77

WBI_01P0 ESRL West Branch, Iowa,
United States 41.72°N 91.35°W 242 862 795 67 3.00 2.07 0.22 4.18

WGC_01C3_14LST ESRL
Walnut Grove,

California, United
States

38.27°N 121.49°W 0 1091 1021 70 3.00 1.68 -‐‑0.10 4.29

WGC_01P0 ESRL
Walnut Grove,

California, United
States

38.27°N 121.49°W 0 891 748 143 3.00 3.67 -‐‑0.67 6.51

WIS_01D0 ESRL WIS Station, Negev
Desert, Israel 31.13°N 34.88°E 400 540 537 3 2.50 0.61 0.03 1.94

WKT_01C3_14LST ESRL Moody, Texas,
United States 31.31°N 97.33°W 251 2117 2100 17 3.00 0.65 0.14 2.29
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WKT_01P0 ESRL Moody, Texas,
United States 31.31°N 97.33°W 251 993 979 14 3.00 0.94 -‐‑0.10 2.85



United States

WLG_01D0 ESRL
Mt. Waliguan,

Peoples Republic
of China

36.29°N 100.90°E 3810 427 413 14 1.50 1.12 0.13 1.91

WSA_06C0_14LST EC Sable Island, Nova
Scotia, Canada 49.93°N 60.02°W 5 2358 2259 99 3.00 1.17 0.17 4.12

ZEP_01D0 ESRL
Ny-‐‑Alesund,

Svalbard, Norway
and Sweden

78.90°N 11.88°E 475 568 566 2 1.50 0.96 0.55 1.22

All-‐‑site summary -‐‑ -‐‑ -‐‑ 85153 83910 1243 -‐‑ 0.73 0.06 2.70

3.   Further Reading

ESRL Carbon Cycle Program
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Fossil Fuel Module [goto top]
1.   Introduction
Human beings first influenced the carbon cycle through land-‐‑use change. Early humans used fire to
control animals and later cleared forest for agriculture. Over the last two centuries, following the industrial
and technical revolutions and the world population increase, fossil fuel combustion has become the
largest anthropogenic source of CO . Coal, oil and natural gas combustion are the most common energy
sources in both developed and developing countries. Various sectors of the economy rely on fossil fuel
combustion: power generation, transportation, residential/commercial building heating, and industrial
processes. 

In 2008, the world emissions of CO  from fossil fuel burning, cement manufacturing, and flaring reached
8.7 PgC yr  (one PgC=10  grams of carbon) [Boden et al., 2011] and we estimate the global total
emissions for 2009 and 2010 to be 8.6 PgC yr  and 9.1 PgC yr  respectively [Boden et al., 2011]. The
2010 figure represents a 47% increase over 1990 emissions. The North American (U.S.A, Canada, and
Mexico) input of CO  to the atmosphere from fossil fuel burning was 1.8 PgC in 2008, representing 21% of
the global total. North American emissions have remained nearly constant since 2000. On the other hand,
emissions from developing economies such as the People's Republic of China have been increasing. The
Department of Energy's 2011 International Energy Outlook has projected that the global total source will
reach 9.1 PgC yr  in 2015 and 11.1 PgC yr  in 2030 [DOE]. 

Despite the recent economic slowdown, which affected developing countries starting in 2008, fossil fuel
emissions in many parts of the world continue to increase. 

In many flux estimation systems, including CarbonTracker, fossil fuel CO  emissions are specified. These
imposed emissions are not optimized in the estimation framework. Thus, fossil fuel CO  emissions must
be prescribed accurately in order to yield robust flux estimates for the land biosphere and oceans. Fossil
fuel emissions estimates we use are available on an annually-‐‑integrated global and national basis, and this
information needs to be gridded before being incorporated into CarbonTracker. The major uncertainty in
this process is distributing the national-‐‑annual emissions spatially across a nation and temporally into
monthly contributions. In CT2011, two different fossil fuel CO  emissions datasets were used to help
assess the uncertainty in this mapping process. The legacy CarconTracker fossil fuel product ("Miller") has
this year been augmented with the "ODIAC" [Oda and Maksyutov, 2011] emissions product. These two
datasets share the same global and national emissions for each year, but differ in how those emissions are
distributed spatially and temporally. 
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Figure 1. Spatial distribution of fossil fuel emissions. This is a spatial average of the Miller and

ODIAC emissions inventories.

2.   The "Miller" emissions dataset

Totals
The Miller fossil fuel emission inventory is derived from independent global total and spatially-‐‑

resolved inventories. Annual global total fossil fuel CO  emissions are from the Carbon Dioxide

Information and Analysis Center (CDIAC) [Boden et al. 2011] which extend through 2008. In order to

extrapolate these fluxes to 2009 and 2010, we extrapolate using the percentage increase or decrease

for each fuel type (solid, liquid, and gas) in each country from the 2011 BP Statistical Review of World

Energy for 2009 and 2010.

Spatial Distribution
Miller fossil-‐‑fuel CO  fluxes are spatially distributed in two steps: First, the coarse-‐‑scale flux

distribution country totals from Boden et al. [2011] are mapped onto a 1°x1° grid. Next, we distribute

the country totals within countries according to the spatial patterns from the EDGAR v4.0 inventories

[European Commission, 2009], which are annual estimates also at 1°x1° resolution. The CDIAC

country-‐‑by-‐‑country totals, however, only sum to about 95% of the global total. We ascribe the

difference to land regions according to the relative pattern of emissions over the globe.

Temporal Distribution
For North America between 30 and 60°N, the Miller system imposes a normalized, annually-‐‑invariant,

seasonal cycle on emissions. This annual cycle is derived by extracting the first and second

harmonics [Thoning et al, 1989] from the Blasing et al. [2005] analysis for the United States. The

Blasing analysis has ~10% higher emissions in winter than in summer. 

For Eurasia, a set of seasonal emissions factors from EDGAR, distributed by emissions sector, is used

to define fossil fuel seasonality. As in North America, this seasonality is imposed only from 30-‐‑60°N.

The Eurasian seasonal amplitude is about 25%, significantly larger than that in North America, owing

to the absence of a secondary summertime maximum due to air conditioning. 

See Box 1 for the resulting time series of fossil fuel emissions. In order to avoid discontinuities in the

fossil fuel emissions between consecutive years, a spline curve that conserves annual totals
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fossil fuel emissions between consecutive years, a spline curve that conserves annual totals

[Rasmussen 1991] is fit to seasonal emissions in each 1°x1° grid cell.

3.   The "ODIAC" emissions dataset

Totals

The ODIAC fossil fuel emission inventory [Oda and Maksyutov, 2011] is also derived from

independent global and country emission estimates from CDIAC, but from the previous yearʼ’s

estimates [Boden et al. 2010]. Annual country total fossil fuel CO  emissions from CDIAC which

extend through 2007, were extrapolated to 2008, 2009 and 2010 using the BP Statistical Review of

World Energy. The difference between the CDIAC global total and country-‐‑by-‐‑country totals were

ascribed to the entire emissions fields. The same adjustment was done for 2009 and 2010 using

preliminary 2009 and 2010 estimates by CDIAC.

Spatial Distribution

ODIAC emissions are spatially distributed using many available “proxy data” that explain spatial

extent of emissions according to emission types (emissions over land, gas flaring, aviation and

marine bunker). Emissions over land were distributed in two steps: First, emissions attributable to

power plants were mapped using geographical locations (latitude and longitude) provided by the

global power plant data CARMA. Next, the remaining land emissions (i.e. land total minus power

plant emissions) were distributed using nightlight imagery collected by U.S. Air Force Defense

Meteorological Satellite Project (DMSP) satellites. Emissions from gas flaring were also mapped using

nightlight imagery. Emissions from aviation were mapped using flight tracks adopted from UK

AERO2k air emission inventory. It should be noted that currently, air traffic emissions are emitted at

ground level within CarbonTracker. Emissions from marine bunker fuels are placed entirely in the

ocean basins along shipping routes according to patterns from the EDGAR database.

Temporal Distribution

The CDIAC estimates used for mapping emissions in ODIAC only describe how much CO  was

emitted in a given year. To present seasonal changes in emissions, we used the CDIAC 1°x1° monthly

fossil fuel emission inventory [Andres et al. 2011]. The CDIAC monthly data utilizes the top 20

emitting countries' fuel (coal, oil and gas) consumption statistics available to estimate seasonal

change in emissions. Monthly emission numbers at each pixel were divided by annual total and then

a fraction to annual total was obtained. Monthly emissions in the ODIAC inventory were derived by

multiplying this fraction by the emission in each grid cell.

Box 1. Comparison of the Miller and ODIAC global fossil fuel emissions estimates
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Time series of global fossil fuel emissions. The Miller (green) and ODIAC (tan) estimates are each
used by half of the eight inversions in the CT2011 suite, so the CT2011 (black) inventory is
effectively an average of Miller and ODIAC. Note that fossil fuel emissions are not optimized in
CarbonTracker. 

 

Spatial differences in long-‐‑term mean fossil fuel emissions. between the two priors Note that
both the Miller and ODIAC emissions inventories use the same country totals, but have different
models for spatial distribution of that flux within countries.

Uncertainties
The uncertainty attached to the global total source is of order 5% (2 sigma) until 2007 [Marland, 2008], but
the uncertainties for individual regions of the world, and for sub-‐‑annual time periods are likely to be
larger. Additional uncertainties are further introduced when the emissions are distributed in space and
time. In the Miller dataset, the overall Eurasian seasonality is uncertain, but most likely a better
representation than assuming no emission seasonality at all. Similarly, the use of the CDIAC monthly
emission dataset for modeling seasonality introduces additional uncertainty in ODIAC. The additional
uncertainty for the global total in the monthly CDIAC emission, which is solely due to the method for
estimating seasonality, is reported as 6.4% [Andres et al. 2011]. As mentioned earlier, fossil fuel emissions
are not optimized in the current CarbonTracker system, similar to many similar global carbon data
analysis systems. 

Spatial and temporal atmospheric CO  gradients arise from terrestrial biosphere and fossil-‐‑fuel sources.
These gradients, which are interpreted by CarbonTracker, are difficult to attribute to one or the other
cause. This is because the biospheric and anthropogenic sources are often co-‐‑located, especially in the
temperate Northern Hemisphere. 

Given that surface CO  flux due to biospheric activity and oceanic exchange is much more uncertain
compared to fossil fuel emissions, CarbonTracker, like most current carbon dioxide data assimilation
systems, does not optimize fossil fuel emissions. The contribution of CO  from fossil fuel burning to
observed CO  mole fractions is considered known. However, for the first time in CarbonTracker, an effort
is made to account for some aspects of fossil fuel uncertainty by using two different fossil fuel estimates
as detailed above. From a technical point of view, extra land biosphere prior flux uncertainty is included in
the system to represent the random errors in fossil fuel emissions. Eventually, fossil fuel emissions could
be optimized within CarbonTracker, especially with the addition of CO  observations as constraints. 

2

2

2
2

14 2



3.   Further Reading

CDIAC (Boden et al.) Annual Global and National fluxes

DOE Energy Information Administration (EIA)

BP Statistical Review of World Energy

EDGAR Database

CDIAC (Blasing et al.) Monthly USA fluxes

L.A. Rasmussen "Piecewise Integral Splines of Low Degree", Computers & Geosciences, 17(9) pp

1255-‐‑1263, 1991

Thoning et al. (1989) Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the

NOAA GMCC data, 1974-‐‑85. Journal of Geophysical Research 94(D6), 8549-‐‑65.

Marland, G. (2008), Uncertainties in Accounting for CO  from Fossil Fuels, Journal of Industrial

Ecology, 12(2), 136-‐‑139.

Boden, T.A., G. Marland, and R.J. Andres. 2011. Global, Regional, and National Fossil-‐‑Fuel CO

Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.

Department of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001_V2011

CDIAC (Boden et al.) Preliminary 2009 and 2010 Global and National Estimates by Extrapolation

The Center for Global Development, CARbon Monitoring Action (CARMA) power plant database

DMSP satellite nightlight data

Centre for Air Transport and the Environment (CATE), AERO2k aviation emissions inventory

Marland, G. (2008), Uncertainties in Accounting for CO  from Fossil Fuels, Journal of Industrial

Ecology, 12(2), 136-‐‑139.

Andres et al. (2011) Monthly, global emissions of carbon dioxide from fossil fuel consumption.

Tellus B, 63:309-‐‑327. doi: 10.1111/j.1600-‐‑0889.2011.00530.x.

CDIAC (Andres et al.) Monthly Fossil-‐‑Fuel CO  emissions

Oda, T. and Maksyutov, S. (2011) A very high-‐‑resolution (1 km×1 km) global fossil fuel CO

emission inventory derived using a point source database and satellite observations of nighttime

lights, Atmos. Chem. Phys., 11, 543-‐‑556, doi:10.5194/acp-‐‑11-‐‑543-‐‑2011.

European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency

(PBL). (2009) Emission Database for Global Atmospheric Research (EDGAR), release version 4.0

TM5 Nested Transport [goto top]

1.   Introduction
The link between observations of CO  in the atmosphere and the exchange of CO  at the Earth's surface is

transport in the atmosphere: storm systems, cloud complexes, and weather of all sorts cause winds that

transport CO  around the world. As a result, local events like fires, forest growth, and ocean upwelling can

have impacts at remote locations. To simulate the winds and the weather, CarbonTracker uses

sophisticated numerical models that are driven by the daily weather forecasts from the specialized

meteorological centers of the world. Since CO  does not decay or react in the lower atmosphere, the

influence of emissions and uptake in locations such as North America and Europe are ultimately seen in

our measurements even at the South Pole! Getting the transport of CO  just right is an enormous

challenge, and costs us almost 90% of the computer resources for CarbonTracker. To represent the

atmospheric transport, we use the Transport Model 5 (TM5). This is a community-‐‑supported model whose

development is shared among many scientific groups with different areas of expertise. TM5 is used for

many applications other than CarbonTracker, including forecasting air-‐‑quality, studying the dispersion of

aerosols in the tropics, tracking biomass burning plumes, and predicting pollution levels that future

generations might have to deal with.

2.   Detailed Description
TM5 is a global model with two-‐‑way nested grids; regions for which high-‐‑resolution simulations are

desired can be nested in a coarser grid spanning the global domain. The advantage to this approach is

that transport simulations can be performed with a regional focus without the need for boundary

conditions from other models. Further, this approach allows measurements outside the "zoom" domain to

constrain regional fluxes in the data assimilation, and ensures that regional estimates are consistent with

global constraints. TM5 is based on the predecessor model TM3, with improvements in the advection

scheme, vertical diffusion parameterization, and meteorological preprocessing of the wind fields (Krol et

al., 2005). The model is developed and maintained jointly by the Institute for Marine and Atmospheric
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al., 2005). The model is developed and maintained jointly by the Institute for Marine and Atmospheric

Research Utrecht (IMAU, The Netherlands), the Joint Research Centre (JRC, Italy), the Royal Netherlands

Meteorological Institute (KNMI, The Netherlands), and NOAA ESRL (USA). In CarbonTracker, TM5 separately

simulates advection, convection (deep and shallow), and vertical diffusion in the planetary boundary layer

and free troposphere. 

Figure 1. TM5 grids used in CarbonTracker. Figure shows the 1°x 1° nested regional

grid over North America and a portion of the global 3°x 2° grid.

The winds which drive TM5 come from the European Center for Medium range Weather Forecast (ECMWF)

operational forecast model. This "parent" model currently runs with ~25 km horizontal resolution and 60

layers in the vertical prior to 2006 (and 91 layers layers in the vertical from 2006 onwards). The carbon

dioxide levels predicted by CarbonTracker do not feed back onto these predictions of winds.

For use in TM5, the ECMWF meteorological data are preprocessed into coarser grids. In CarbonTracker,

TM5 is run at a global 3°x 2° resolution with a nested regional grid over North America at 1° x 1°

resolution (Figure 1). TM5 runs at an external time step of three hours, but due to the symmetrical

operator splitting and the refined resolution in nested grids, processes at the finest scale are repeated

every 10 minutes. The vertical resolution of TM5 in CarbonTracker is 34 hybrid sigma-‐‑pressure levels

(from 2006 onwards; 25 levels for 2000-‐‑2005), unevenly spaced with more levels near the surface.

Approximate heights of the mid-‐‑levels (in meters, with a surface pressure of 1012 hPa) are:

Level Height (m) Level Height (m)

1 34.5 14 9076.6

2 111.9 15 10533.3

3 256.9 16 12108.3

4 490.4 17 13874.2

5 826.4 18 15860.1

6 1274.1 19 18093.2

7 1839.0 20 20590.0



7 1839.0 20 20590.0

8 2524.0 21 24247.3

9 3329.9 22 29859.6

10 4255.6 23 35695.0

11 5298.5 24 42551.5

12 6453.8 25 80000.0

13 7715.4

3.   Further Reading

The TM5 model homepage

ECMWF forecast model technical documentation

The NCEP reanalysis meteo data

Peters et al., 2004, JGR paper on transport in TM5

Krol et al., 2005, ACP overview paper of the TM5 model

Ensemble Data Assimilation [goto top]

1.   Introduction
Data assimilation is the name of a process by which observations of the 'state' of a system help to

constrain the behavior of the system in time. An example of one of the earliest applications of data

assimilation is the system in which the trajectory of a flying rocket is constantly (and rapidly) adjusted

based on information of its current position, heading, speed, and other factors, to guide it to its exact

final destination. Another example of data assimilation is a weather model that gets updated every few

hours with measurements of temperature and other variables, to improve the accuracy of its forecast for

the next day, and the next, and the next. Data assimilation is usually a cyclical process, as estimates get

refined over time as more observations about the "truth" become available. Mathematically, data

assimilation can be done with any number of techniques. For large systems, so-‐‑called variational and

ensemble techniques have gained most popularity. Because of the size and complexity of the systems

studied in most fields, data assimilation projects inevitably include supercomputers that model the known

physics of a system. Success in guiding these models in time often depends strongly on the number of

observations available to inform on the true system state.

In CarbonTracker, the model that describes the system contains relatively simple descriptions of

biospheric and oceanic CO  exchange, as well as fossil fuel and fire emissions. In time, we alter the

behavior of this model by adjusting a small set of parameters as described in the next section.

2.   Detailed Description
The four surface flux modules drive instantaneous CO  fluxes in CarbonTracker according to:

F(x, y, t) = λ • F (x, y, t) + λ • F (x, y, t) + F (x, y, t) + F (x, y, t)

Where λ represents a set of linear scaling factors applied to the fluxes, to be estimated in the assimilation.

These scaling factors are the final product of our assimilation and together with the modules determine

the fluxes we present in CarbonTracker. Note that no scaling factors are applied to the fossil fuel and fire

modules.

2.1   Land-‐‑surface classification
The scaling factors λ are estimated for each week and assumed constant over this period. Each scaling

factor is associated with a particular region of the global domain, and currently the geographical

distribution of the regions is fixed. The choice of regions is a strong a-‐‑priori constraint on the resulting

fluxes and should be approached with care to avoid so-‐‑called "aggregation errors" [Kaminski et al., 2001].

We chose an approach in which the ocean is divided up into 30 large basins encompassing large-‐‑scale

ocean circulation features, as in the TransCom inversion study (e.g. Gurney et al., [2002]). The terrestrial

biosphere is divided up according to ecosystem type as well as geographical location. Thereto, each of the

11 TransCom land regions contains a maximum of 19 ecosystem types summarized in the table below.

Figure 1 shows ecoregions for North America (click here for global land ecoregions). Note that there is

currently no requirement for ecoregions to be contiguous, and a single scaling factor can be applied to the

same vegetation type on both sides of a continent. Further details on ecoregions can be found here.
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Fig 1. CarbonTracker ecoregions in North America

Theoretically, this approach leads to a total number of 11*19+30=239 optimizable scaling factors λ each

week, but the actual number is 156 since not every ecosystem type is represented in each TransCom

region, and because we decided not to optimize parameters for ice-‐‑covered regions, inland water bodies,

and desert. The total flux coming out of these last regions is negligibly small. It is important to note that

even though only one parameter is available to scale, for instance, the flux from coniferous forests in

Boreal North America, each 1° x 1° grid box predominantly covered by coniferous forests will have a

different flux F(x,y,t) depending on local temperature, radiation, and CASA modeled monthly mean flux.

Ecosystem types considered on 1° x 1° for the terrestrial flux inversions is based on Olson, [1992]. Note

that we have adjusted the original 29 categories into only 19 regions. This was done mainly to fill the

unused categories 16,17, and 18, and to group the similar (from our perspective) categories 23-‐‑26+29.

The table below shows each vegetation category considered. Percentages indicate the area associated with

each category for North America rounded to one decimal.

Ecosystem Types

category Olson V 1.3a
Percentage

area

1 Conifer Forest 19.0%

2 Broadleaf Forest 1.3%

3 Mixed Forest 7.5%

4 Grass/Shrub 12.6%

5 Tropical Forest 0.3%

6 Scrub/Woods 2.1%

7 Semitundra 19.4%

8 Fields/Woods/Savanna 4.9%

9 Northern Taiga 8.1%

10 Forest/Field 6.3%

11 Wetland 1.7%



11 Wetland 1.7%

12 Deserts 0.1%

13 Shrub/Tree/Suc 0.1%

14 Crops 9.7%

15 Conifer Snowy/Coastal 0.4%

16 Wooded tundra 1.7%

17 Mangrove 0.0%

18 Non-‐‑optimized areas (ice, polar desert,
inland seas) 0.0%

19 Water 4.9%

Each 1° x 1° pixel of our domain was assigned one of the categories above bases on the Olson category
that was most prevalent in the 0.5° x 0.5° underlying area.

2.2   Ensemble Size and Localization
The ensemble system used to solve for the scalar multiplication factors is similar to that in Peters et al.
[2005] and based on the square root ensemble Kalman filter of Whitaker and Hamill, [2002]. We have
restricted the length of the smoother window to only five weeks as we found the derived flux patterns
within North America to be robustly resolved well within that time. We caution the CarbonTracker users
that although the North American flux results were found to be robust after five weeks, regions of the
world with less dense observational coverage (the tropics, Southern Hemisphere, and parts of Asia) are
likely to be poorly observable even after more than a month of transport and therefore less robustly
resolved. Although longer assimilation windows, or long prior covariance length-‐‑scales, could potentially
help to constrain larger scale emission totals from such areas, we focus our analysis here on a region
more directly constrained by real atmospheric observations.

Ensemble statistics are created from 150 ensemble members, each with its own background CO
concentration field to represent the time history (and thus covariances) of the filter. To dampen spurious
noise due to the approximation of the covariance matrix, we apply localization [Houtekamer and Mitchell,
1998] for non-‐‑MBL sites only. This ensures that tall-‐‑tower observations within North America do not
inform on for instance tropical African fluxes, unless a very robust signal is found. In contrast, MBL sites
with a known large footprint and strong capacity to see integrated flux signals are not localized.
Localization is based on the linear correlation coefficient between the 150 parameter deviations and 150
observation deviations for each parameter. If the relationship between a parameter deviation and its
modeled observational impact is statistically significant, then that relationship is used to modify
parameters. Otherwise, the relationship is assumed to be spurious noise due to the numerical
approximation of the covariance matrix by the limited ensemble. We accept relationships that reach 95%
significance in a student's T-‐‑test with a two-‐‑tailed probability distribution.

2.3   Dynamical Model
In CarbonTracker, the dynamical model is applied to the mean parameter values λ as:

λ  = (λ   + λ    + λ    )   ⁄   3.0

Where "a" refers to analyzed quantities from previous steps, "b" refers to the background values for the
new step, and "p" refers to real a-‐‑priori determined values that are fixed in time and chosen as part of the
inversion set-‐‑up. Physically, this model describes that parameter values λ for a new time step are chosen
as a combination between optimized values from the two previous time steps, and a fixed prior value. This
operation is similar to the simple persistence forecast used in Peters et al. [2005], but represents a
smoothing over three time steps thus dampening variations in the forecast of λ  in time. The inclusion of
the prior term λ  acts as a regularization [Baker et al., 2006] and ensures that the parameters in our
system will eventually revert back to predetermined prior values when there is no information coming from
the observations. Note that our dynamical model equation does not include an error term on the
dynamical model, for the simple reason that we don't know the error of this model. This is reflected in the
treatment of covariance, which is always set to a prior covariance structure and not forecast with our
dynamical model.
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3   Covariance Structure
Prior values for λ  are all 1.0 to yield fluxes that are unchanged from their values predicted in our

modules. The prior covariance structure P  describes the magnitude of the uncertainty on each parameter,

plus their correlation in space. The latter is applied such that correlations between the same ecosystem

types in different TransCom regions decrease exponentially with distance (L=2000km), and thus assumes

a coupling between the behavior of the same ecosystems in close proximity to one another (such as

coniferous forests in Boreal and Temperate North America). Furthermore, all ecosystems within tropical

TransCom regions are coupled decreasing exponentially with distance since we do not believe the current

observing network can constrain tropical fluxes on sub-‐‑continental scales, and want to prevent spurious

compensating source/sink pairs ("dipoles") to occur in the tropics.

In our standard assimilation, the chosen standard deviation is 80% on land parameters. All parameters

have the same variance within the land or ocean domain. Because the parameters multiply the net-‐‑flux

though, ecosystems with larger weekly mean net fluxes have a larger variance in absolute flux magnitude.

3.1   Multiple prior models
In Bayesian estimation systems like CarbonTracker, there is a potential for bias from a flux prior to

propagate through the inversion system to the final result. It is difficult to quantify this effect, and as a

result it is generally considered a precondition that flux priors be unbiased. We cannot guarantee this for

any of our fluxes, be they the prior estimates for terrestrial or oceanic exchange, or the presumed wildfire

and fossil fuel emissions. In order to explicitly quantify the impact of prior bias on our solution, in CT2011

CT2011_oi we present the result of a multi-‐‑model prior suite of inversions. We have used two terrestrial

flux priors, two air-‐‑sea exchange priors one air-‐‑sea exchange prior, and two estimates of imposed fossil

fuel emissions in a three-‐‑way factorial design experiment. This has resulted in eight four individual

inversions, each using a unique combination of priors and conducted independently according to the

methods described above. We present as a final result the mean flux across this suite of inversions and the

atmospheric CO  distribution resulting from applying these mean fluxes to our atmospheric transport

model. Each of the priors is described in detail on its corresponding documentation page (fossil, land,

ocean). 

Notice: CT2011_oi does not use the "climatological" ocean prior. After we released CarbonTracker

2011, a significant bug was discovered in our atmospheric transport model. We have corrected the bug

and are releasing revised results under the release name "CT2011_oi". One consequence of this problem is

that the four inversions using the climatological ocean flux prior were faulty. They have been removed

from the inversion suite in CT2011_oi. Use of the original CT2011 results is strongly discouraged. Details

can be found at this link.
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Fig 2. CT2011_oi prior covariance structure. The prior covariance matrix (top panel) and the

square root of diagonal members of this matrix (bottom panel). Covariance matrix quantities are

dimensionless squared scaling factors, and the bottom panel is the square root of this. TransCom

land regions form the first 11 large divisions on the axes here. As described above, each of those

regions contains 19 potential ecosystems. Correlations between similar ecosystems in proximate

Transcom regions are visible in North America (e.g. NABR and NATM, the boreal and temperate North

American regions) and Eurasia. Within tropical Transcom regions, however, differing ecosystems are

assigned a non-‐‑zero prior covariance, which is visible here as red block-‐‑like structures on the

diagonal within, for example, the South America Tropical (SATR) Transcom region. Ocean regions

have a more complicated covariance structure that depends on which prior is used; the structure

shown here is that of the ocean inversion flux prior. The lower panel of this diagram compares the

on-‐‑diagonal elements of the prior covariance matrix by plotting their square roots. The resulting

standard deviations are directly comparable to the percentages discussed in section 3 above; 0.8 is

equivalent to 80%. The retuning of the covariance matrix for CT2011_oi's multiple-‐‑prior simulation

is made evident by also showing these values from previous CarbonTracker releases in red.

3.2   Posterior Uncertainties in CarbonTracker

The formal "internal" error estimates produced by CarbonTracker are unrealistically large. This is largely a

result of the relatively short assimilation window in CarbonTracker, along with a dynamical model that

introduces a fresh prior covariance matrix with every new week entering the assimilation window. This

five-‐‑week window effectively inhibits the formation of anticorrelations ("dipoles") in flux estimates, and

does little to reduce the confidence interval on prior fluxes.

The temporal truncation in CarbonTracker imposed by its five-‐‑week assimilation window tends to yield

regional flux estimates that are largely uncorrelated with those from other regions. A consequence of this

feature is that uncertainties in CarbonTracker tend to increase as larger regions are considered; regional

errors mostly just add in quadrature without any cancellation from dipole anticorrelation. Whereas many



errors mostly just add in quadrature without any cancellation from dipole anticorrelation. Whereas many
inversions yield smaller errors as the spatial extent of the region being considered increases,
CarbonTracker acts in the opposite fashion. This is perhaps most obvious in the estimate of
CarbonTracker's global annual surface flux of carbon dioxide. While CT2011_oi estimates a one-‐‑sigma
error of more than 6 PgCyr  on its global flux, this quantity is in actuality much more well-‐‑constrained.
This is evident from CarbonTracker's excellent agreement with observational estimates of atmospheric
growth rate.

In CT2011_oi, error estimates are about a factor of two larger than in previous releases, mainly due to the
retuning of the land prior covariance discussed above. However, uncertainties presented for CT2011_oi
take into account not only the "internal" flux uncertainty generated by a single inversion, but also the
across-‐‑model "external" uncertainty representing the spread of the inversion models due to the choice of
prior flux.

4.   Further Reading

Whitaker and Hamill, 2002 paper
Peters et al., 2005 paper
Olson ecosystem types, data
Kaminski et al., Journal of Geophysical Research, Vol. 106, No. D5, PP. 4703-‐‑4715, 2001
doi:10.1029/2000JD900581

Ecoregions in CarbonTracker [goto top]
1.   What are ecoregions?
Ecoregions are the actual scale on which CarbonTracker performs its optimization over the land.
Ecoregions are meant to represent large expanses of land within a given continent having similar
ecosystem types, and are used to divide continents into smaller pieces for analysis. The ecosystem types
use in CarbonTracker are derived from the Olson [1992] vegetation classification (Table 1, Figure 1).

We define an ecoregion as an ecosystem type within a given Transcom land region. There are 11 such
Transcom land regions (Figure 2), so there are 11*19 = 209 possible ecoregions. However, not all
ecosystem types are present in all Transcom regions, and the actual number of land ecoregions ends up
being 126.

Note on "Semitundra": this is a potentially misleading shorthand abbreviation for a collection of
ecosystems comprising semi-‐‑desert, shrubs, steppe, and polar+alpine tundra. The "Semitundra" zones
appearing in northern Africa where one expects to find the Sahara desert are not, of course, tundra
environments. They are instead semi-‐‑desert zones. 

Figure 1. Global distribution of Olson ecosystem types.

Table 1. Ecosystem areas over the two Transcom regions covering North America.
Ecosystem Type North American Boreal North American Temperate

-‐‑1



Area (km ) Percentage Area (km ) Percentage
Conifer Forest 2315376 22.9% 1607291 14.0%

Broadleaf Forest -‐‑ -‐‑ 269838 2.4%

Mixed Forest 592291 5.9% 930813 8.1%

Grass/Shrub 53082 0.5% 2515582 21.9%

Tropical Forest -‐‑ -‐‑ 58401 0.5%

Scrub/Woods -‐‑ -‐‑ 416520 3.6%

Semitundra 3396292 33.6% 866468 7.6%

Fields/Woods/Savanna 29243 0.3% 1020939 8.9%

Northern Taiga 1658773 16.4% -‐‑ -‐‑

Forest/Field 61882 0.6% 1243174 10.8%

Wetland 322485 3.2% 66968 0.6%

Deserts -‐‑ -‐‑ 21934 0.2%

Shrub/Tree/Suc -‐‑ -‐‑ 11339 0.1%

Crops -‐‑ -‐‑ 1969912 17.2%

Conifer Snowy/Coastal 41440 0.4% 73437 0.6%

Wooded tundra 360388 3.6% 6643 0.1%

Mangrove -‐‑ -‐‑ -‐‑ -‐‑

Non-‐‑optimized areas -‐‑ -‐‑ -‐‑ -‐‑

Water 1269485 12.6% 384728 3.4%

Total 10100736 100.0% 11463986 100.0%

2.   Why use ecoregions?
A fundamental challenge to atmospheric inversions like CarbonTracker is that there are not enough

observations to directly constrain fluxes at all times and in all places. It is therefore necessary to find a

way to reduce the number of unknowns being estimated. Strategies to reduce the number of unknowns in

problems like this one generally impose information from external sources. In CarbonTracker, we reduce

the problem size both by estimating fluxes at the ecoregion scale, and by using a terrestrial biological

model to give a first guess flux from the ecoregion. The model is also used to give the spatial and

temporal distribution of CO  flux within a region and week.

2.   Ecosystems within Transcom regions
Each Transcom land region (Figure 2) can contain up to 19 ecoregions. 
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Figure 2. The 11 land regions and 11 ocean regions of the Transcom project.

Figure 3. Ecoregions within the North American Boreal (left) and North American Temperate (right)
Transcom regions.

Figure 4. Ecoregions within the South American Tropical (left) and South American Temperate (right)
Transcom regions.



Figure 5. Ecoregions within the Europe Transcom region.

Figure 5. Ecoregions within the Northern Africa (left) and Southern Africa (right) Transcom regions.

3.   Further Reading

Olson ecosystem types, data


