Can Carbonyl Sulfide Provide Constraints to Gross Terrestrial Photosynthesis?
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b) Northern & Eastern sites

3) Measured seasonal variations and vertical
gradients over North America for COS and CO,:

a) Mid-West sites

¢) Western & Pacific sites

d) Southern sites

1) AbStraCtZ The atmospheric burden of

carbon dioxide (CO,) increases at variable rates from year
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to year in part because of variability in carbon uptake and

release by the terrestrial biosphere. Improving our

understanding of this interaction and the factors that
influence it are crucial for developing a predictive
understanding of atmospheric CO, in the future.
Unfortunately, the tools available for studying
independently the response of respiration and
photosynthesis to changes in climate are limited.
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We have suggested recently that carbonyl sulfide may
help in this regard (Montzka et al., 2007). Uptake by
vegetation represents the main loss mechanism for

atmospheric carbonyl sulfide (COS). COS undergoes
rapid hydrolysis by carbonic anhydrase and rubisco, the
same enzymes involved in the initial stages of carbon
assimilation by vegetation. The influence of this uptake is
readily observed in the spatial and temporal distribution
of atmospheric COS in the Northern Hemisphere. COS is
unique, however, because it is not emitted in large
quantities from vegetation as is CO, during respiration.
This critical fact suggests that large-scale features
observed for COS may be responding primarily to spatial
and temporal variations in terrestrial photosynthesis.
Although this hypothesis is supported by the measurement
data obtained to date, the influence of non-vegetative
COS fluxes is poorly constrained. Here we investigate
the observations we have made over the past 8 years to

Illinois, lowa, Nebraska—
Corn-belt, agriculture intensive

These data show:

«Strong seasonal variations at all sites for both COS and CO,.

+Vertical gradients that are largest during the growing season and at Mid-West (panel a) and Northern & Eastern sites
(panel b), with reduced COS and CO, mixing ratios measured in the planetary boundary layer (< 2 km).

A larger reduction in COS mixing ratios in the boundary layer during the growing season (relative to higher alti )
when compared to CO, by factors of 3 to 9, at Mid-West (panel a) and Northern & Eastern (panel b) sites (bottom
panels in all figures, the ecosystem-scale relative uptake (ERU) calculated as: [(COS; g, —~ COSg 54)/COS; g/ [(CO,,
sskm = CO2 0.2a)/CO; 65 DO the differences between the Mid-West and North/Eastern sites reflect the
preponderance of C, (trees) vs C, (corn and temperate grasses) photosynthesis? COS exhibits reduced boundary-
layer mixing ratios through October often, is this because of continued vegetative uptake, or do soils contribute?

«Smaller gradients and ill-defined ecosystem relative uptake values of COS vs CO, at Western & Pacific (panel c) and
Southern sites (panel d).

Non-agricultural, 6 sites—

(Royal blue on map)

5) COS vs. CO, in samples collected

from aircraft over North America:

COS vs. CO, vs. altitude <2000, 2000-5000, 5000-8000 masl
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Texas, Oklahoma, and
South Carolina

Hawaii, Vancouver,
and California

assess the relationships between COS and CO, as a
function of time and space, and the extent to which non-

4) Hemispheric seasonal variations for COS and CO,:

Carbon Dioxide (detrended; ppm)  Data: fall 2004-fall-2007
During most of the winter and spring, samples with enhanced mixing ratios

of CO, are generally accompanied by reduced COS mixing ratios. This
relationship begins to change as the growing season develops in late spring
and reduced levels of CO, are accompanied by reduced mixing ratios of COS
in low-altitude samples. This relationship holds in most samples from June-
August. During the fall, however, the range of CO, mixing ratios increases
while those measured for COS stays about the same.

5b) On the influence of soils on COS over North

America: can H, measurements provide insights?
COS is known to undergo carbonic-anhydrase catalyzed hydrolysis in soils.
How much does this contribute to reduced COS in the boundary layer?

Do COS soils losses confound the signal from vegetative uptake?

COS vs. H, vs. altitude <2000, 2000-5000, 5000-8000 masl
| [ [ T

Hydrogen (ppb)  Data from fall 2004-fall-2007

The main sink for atmospheric H, is destruction by soils—this is why reduced
mixing ratios of H, are generally observed at lower elevations in these
samples. COS exhibits a fairly strong correlation with H, in most months, as it
too has a strong surface-based loss. The correlation between COS and H, is
not constant over the year however; the correlation slope is enhanced by a
factor of 3 during the summer months compared to wintertime (green line vs.
red line) perhaps as a result of the additional vegetative loss of COS during
summer. The enhanced slope is observed through Sept. and Oct., long after the
COS vs. CO, summer correlation has broken down, perhaps implying that
vegetative uptake of COS (and CO,) persists through these months.
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gase_s such s 3)Kz 1” IZI;(r)]OZ 1omass burning ’:‘aorthem Hemisphere COS monthly fluxes 612 R measurements of other gases, for example tracers of biomass burning, fossil * the gradients are pronounced above mid-continental and eastern
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Noans f‘ATgspand G Groups, Protoschill-Krebs et al. Atmos, Environ. 30, 3151- 4 S [Aw ) = 2500 assessing reglo_nal and mterannua_l variations in ter_rest_nal
J. Berry E. Saltzman 3156, 1996. o e Red o phtosynthesis independent of the influences of respiration.

C. Siso T Conway Montzka et al., J. Geophys. Res., 112, D09302, 2007. | | - e >15 ppt - . . ss'ggism

B. Munger S. Wofsy Sandoval-Soto et al., Biogeosciences, 2, 125-132, - . e - - - - T L 4 o f) Concurrent measurements of a wide suite of other trace gases in these

E. Campbell 2005. Average flask sampling frequency (since 2004 for aircraft profiles): A e Ny . Red samples (COS, HFCs, HCFCs, CH,l, CHBr;, Benzene, CO) should
Aircraft profiles 1 to 4 times per month (12 flasks/profile) @2 t0 4 per month at surface sites (paired flasks) - . < 5| 5000-8000

210 3 samples per week at tower sites (often as pairs)

CO, (detrended; ppm) ] CO, (detrended; ppm)

improve our understanding of atmospheric CO,.



