THE STATE OF GREENHOUSE GASES IN THE ATMOSPHERE USING GLOBAL OBSERVATIONS THROUGH 2006

L.A. Barrie¹, G.O. Braathen¹, J.H. Butler², E.Dlugokencky², D.J. Hofmann², P. Tans², Y. Tsutsumi³

¹ World Meteorological Organization, Geneva, Switzerland

² NOAA, Earth System Research Laboratory, Boulder, Colorado

³ Japanese Meteorological Agency and the WMO World Data Centre on Greenhouse Gases, Tokyo, Japan

The latest analysis of data from the WMO-GAW Global Greenhouse Gas Monitoring Network shows that the globally averaged mixing ratios of carbon dioxide (CO₂) and nitrous oxide (N₂O) have reached new highs in 2006 with CO₂ at 381.2 ppm and N₂O at 320.1 ppb. Atmospheric growth rates in 2006 of these gases are consistent with recent years. The mixing ratio of methane (CH₄) remains almost unchanged at 1782 ppb. These values are higher than those in preindustrial times by 36.1%, 18.6% and 154.6%, respectively. Methane growth has slowed during the past decade. The NOAA Annual Greenhouse Gas Index (AGGI) shows that from 1990 to 2006 the atmospheric radiative forcing by all long-lived greenhouse gases has increased by 22.7%. The combined radiative forcing by CFC-11 and CFC-12 exceeds that of N₂O. They are decreasing very slowly as a result of emission reductions under the Montreal Protocol on Substances That Deplete the Ozone Layer.

Column-mean carbon dioxide - Feb 1, 2005

Fig. 1. Column averaged CO_2 mixing ratio (ppm) for 1 February 2005 calculated from the WMO-GAW Global CO_2 network described in this Bulletin and NOAA's CarbonTracker model (see: http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). Blue regions have relatively low CO_2 and red regions have relatively high CO_2 . High CO_2 values, mostly from fossil fuel combustion, are observed over North America, Europe and East Asia. The passage of a frontal system is seen between eastern Europe and Asia. CO_2 from a biomass burning plume is being transported from Equatorial Africa towards the Atlantic Ocean.