The Austrian radiation monitoring network ARAD Ursula Weiser, BSRN Workshop, 25-29 April 2016

best practice and added value

Zentralanstalt für Meteorologie und Geodynamik

M. Olefs¹, M. Mair¹, D.J. Baumgartner², F. Obleitner³, C. Bichler^{4,5}, U. Foelsche^{4,5}, H. Pietsch⁴, H.E. Rieder^{5,4,6}, P. Weihs⁷, F. Geyer¹, W. Schöner^{8,6}

[1] {ZAMG - Central Institute for Meteorology and Geodynamics, Vienna, Austria}, [2] {Kanzelhöhe Observatory for Solar and Environmental Research, University of Graz, Graz, Austria}, [3] {Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria.}, [4] {Institute for Geophysics, Astrophysics and Meteorology/Institute of Physics (IGAM/IP), University of Graz, Graz, Austria}, [5] {Wegener Center for Climate and Global Change (WEGC), University of Graz, Austria}, [6] {Austrian Polar Research Institute, Vienna, Austria}, [7] {Institute for Meteorology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria}, [8] {Institute for Geography and Regional Research University of Graz, Graz, Austria}

ARAD: aims and scopes

Advance:

• national climate monitoring

Support :

- satellite retrieval
- atmospheric modelling
 - solar energy development
- downwelling solar and infrared radiation using suntracking devices
- instruments according to BSRN standards
- 5 stations (200 3100 m a.s.l.)
- station Sonnblick part of BSRN since 2013

ARAD: instrumentation and methods

Parameter	Manufacturer	Тур	ISO-9060 classifikation	Spectral range [nm]	sensitivities min/max/(mean) [uV/W/m ²]	expanded uncertainty range min/max/(mean) [%]
DIR	Kipp & Zonen	CHP1	first class	200-4000	7,62/8,02/7,78	1,1/1,1/1,1
DIR	Hukseflux	DR02-T	first class	200-4000	10,05/11,93/10,97	1,3/1,5/1,4
GLO	Kipp & Zonen	CMP21	secondary standard	285-2800	8,29/12,75/9,52	1,4/1,5/1,5
GLO	Kipp & Zonen	CM22	secondary standard	200-3600	9,15/9,19/9,17	1,0/1,0/1,0
DIF	Kipp & Zonen	CMP21	secondary standard	285-2800	8,29/12,75/9,52	1,4/1,5/1,5
DIF	Kipp & Zonen	CM22	secondary standard	200-3600	9,15/9,19/9,17	1,0/1,0/1,0
DLW	Kipp & Zonen	CGR4/CG4	-	4500-42000	6,70/15,25/10,78	1,9/5,6/4,1

Data sampling: 1 Hz 1-minute statistics stored: min, max, std

ARAD: instrumentation and methods

station setup

	Wien	Graz	Innsbruck	Sonnblick	Kanzelhöhe	
Lat [°]	48,25	47,08	47,26	47,05	46,68	
Lon [°]	16,36	15,45	11,38	12,96	13,90	
Alt [m]	198	398	578	3109	1520	
temp [°C]	10,4	9,8	9,4	-5,1	4,6	
precip [mm]	651	885	911	2263	1103	
topo type	Flat/Urban Flat/Urban		Mountain valley/Urban	Mountain top/Rural	Mountain top/Rural	
suntr. device	Solys 2	Kipp&Zonen 2 AP	Solys 2	Kipp&Zonen 2 AP	Solys 2	
rad. Instr.	2xCMP21, 1xCHP1, 1xCGR4	2xCMP21, 1xCHP1, 1xCGR4	2xCMP21, 1xCHP1, 1xCGR4	2xCMP21, 1xDR02, 1xCGR4	2xCM22, 1XCHP1, 1xCG4	
heating/vent device	PMOD-VHS	enbrodt/self-design	PMOD-VHS	Eigenbrodt	Kipp&Zonen	
operated by	ZAMG	ZAMG/Uni Graz	ZAMG/Uni Innsbruck	ZAMG	ZAMG/KSO	
monitoring start	09.02.2011	31.08.2011	05.07.2011	01.01.2011	01.01.2013	

ARAD: calibration

- pyranometers:
 - comparison to working standard pyranometer (ZAMG Vienna) or sent to K&Z (indoor calibration procedure) (ISO 9847)
 - working standard against TMI cavity (ISO 9846)
- pyrheliometers:
 - direct comparison against TMI (ISO 9059)
 - > TMI cavity participates regularly at IPC (traceability to WRR)
- pyrgeometers:
 - sent to K&Z (traceability to WISG)
- calibration interval:
 - annualy at BSRN Sonnblick
 - every 2 years at other stations

- regular tasks: cleaning, levelling, visual inspection of: cables, heating/ventilation devices, control suntracking system, shading of instruments
- occasional tasks: cleaning of heating/ventilation system, service suntracker
- interval: once a week (daily at BSRN Sonnblick)
- regulated in a manual
- results entered in web interface, stored in central database (flagged as "wrong")

ARAD: data quality control (QC)

- 2 automated methods, 1 manual method
- **daily automated method:** script containing QC criteria (expanded version, Long and Shi (2008)):
 - checking of 61 quality criteria (integrity tests, outlier detections, min/max tests, comparison tests)
 - creation of quality flags
 - graphical summary
 - conversion of mV to W/m² (using calibration factors)
 - calculation of clear sky index (CSI, Marty and Philipona (2000))
 - storage of solar position
- manual: visual inspection of:
 - the graph of the daily automated QC
 - a near-realtime interactive data plot (updated every 5 minutes)
 - review of automated e-mail alerts (hourly)

ARAD: data quality - average flag statistics 2012-2014

Flag	Wien [%]	Graz [%]	Innsbruck [%]	Sonnblick [%]		
	GLO, DIF, DIR, DLW					
Good (1)	99 / 98 / 98 / 96	93 / 96 / 96 / 95	92 / 93 / 94 / 91	81 / 74 / 85 / 81		
Wrong (2)	1/1/0/0	6/3/2/2	1/1/0/0	16/24/13/14		
Dubious (3)	0/0/1/3	0/1/1/3	0/0/0/3	1/1/1/3		
Missing (255)	1/0/0/0	1/1/1/1	5/5/5/5	1/1/1/1		
"Perfect"	94	88	89	67		

","Perfect" = percentage of all 4 measured parameters simulatneously flagged as "good"

ARAD: data snippet

seasonal mean daily courses (Dec 2013 - Nov2014)

Sonnblick

Wien

Innsbruck

— Graz

Kanzelhöhe

ARAD: uncertainty analysis – methodology

- uncertainty estimate of shortwave radiation fluxes at 5 ARAD sites
- methodology following Vuilleumier et al. (2014) and GUM (2008) and Reda (2011)
- 1 full annual cycle (1 July 2014 to 30 June 2015)
- components of combined standard uncertainty of measured irradiance:
 - sensitivity (calibration uncertainty, non-linearity, temperature dependance, aging)
 - raw signal (accuracy, resolution and offset DAQ)
 - statistical (STD of irradiance signal, when DIR varies slowly)
 - thermal offset (estimated from nighttime pyranometer data, lacking dome temperature meas. or capping experiments)

> operational uncertainties (soiling, leveling, directional errors)

Vuilleumier, L., Hauser, M., Félix, C., Vignola, F., Blanc, P., Kazantzidis, A. and Calpini, B.: Accuracy of ground surface broadband shortwave radiation monitoring: Shortwave radiation monitoring accuracy, J. Geophys. Res. Atmospheres, 119(24), 13,838–13,860, doi:10.1002/2014JD022335, 2014

ARAD: uncertainty analysis – results

										_			Co	ntribu	tion (%)°				
	Expanded						Standard ^b				ss Is									
	WHW	GRZ	IBK	KSO	SON	WHW	GRZ	IBK	KSO	SON	WHW	GRZ	IBK	KSO	SON	WHW	GRZ	IBK	KSO	SON
										Sensi	ivity fa	ctor (u	1,)							
DIR	1,28 %	1,28 %	1,28 %	1,49 %	1,53 %	0,65 %	0,65 %	0,65 %	0,76 %	0,78 %	15	14	10	74*	34	58*	76*	57*	87*	86*
GLO	1,90 %	1,98 %	1,98 %	2,55 %	1,53 %	0,97 %	1,01 %	1,01 %	1,30 %	0,78 %	1	1	1	5	0	61*	63*	63*	79*	46*
DIF	1,90 %	1,90 %	1,97 %	2,55 %	1,53 %	0,97 %	0,97 %	1,01 %	1,30 %	0,78 %	24	29	21	53*	17	92*	93*	94*	81*	33
									Uncerta	nty of the i	aw sign	al U /	∕ of th	e DA	Q (u "					
DIR	10 µV	10 µV	10 µV	0,07 % + 2 μV	10 µV	5,77 μV	5,77 μV	5,77 μV	0,04 % + 1,15 μV	5,77 μV	75*	82*	83*	15	61*	1	1	1	≈ 0	0
GLO	10 µV	10 µV	10 µV	0,07 % + 2 μV	10 µV	5,77 μV	5,77 μV	5,77 μV	0,04 % + 1,15 μV	5,77 μV	1	1	2	0	1	≈0	≈0	≈0	≈0	0
DIF	10 µV	10 µV	10 µV	0,07 % + 2 μV	10 µV	5,77 μV	5,77 μV	5,77 μV	0,04 % + 1,15 μV	5,77 μV	48*	70*	56*	3	50*	2	2	2	≈ 0	1
										Statistic	l Uncer	tainty	/ (u _{stat}	,)						
DIR						0,37 %	0,29 %	0,22 %	0,25 %	0,29 %	5	3	1	8	5	19	15	7	9	12
GLO						0,33 %	0,29 %	0,22 %	0,3 %	0,4 %	≈ 0	≈0	≈0	≈ 0	0	7	5	3	4	12
DIF						0,23 %	0,21 %	0,15 %	0,62 %	1,1 %	1	1	≈0	12	33	5	4	2	18	66*
										Operation	al uncer	tainti	es (u a	_{op})						
										1.	hermal	effec	t							
GLO	0	2 Wm ⁻²	1 Wm ⁻²	1 Wm ⁻²	1 Wm ⁻²	0	1,02 Wm ⁻²	0,51 Wm ⁻²	0,51 Wm ⁻²	0,51 Wm ⁻²	0	3	1	3	1	0	1	0	0	0
DIF	1 Wm ⁻²	0	1 Wm ⁻²	1 Wm ⁻²	1 Wm ⁻²	0,51 Wm ⁻²	0	0,51 Wm ⁻²	0,51 Wm ⁻²	0,51 Wm ⁻²	27	0	22	33	0	1	0	1	0	0
										2. D	irection	al erro	or							
GLO	10 Wm ⁻²	10 Wm ⁻²	10 Wm ⁻²	5 Wm ⁻²	10 Wm ⁻²	5,77 Wm ⁻²	5,77 Wm ⁻²	5,77 Wm ⁻²	2,89 Wm ⁻²	5,77 Wm ⁻²	98*	95*	96*	91*	97*	22	21	21	4	25
											3. Soili	ng								
DIR	0,8 %	0,4 %	1,0 %	0,3 %	0,2 %	0,41 %	0,2 %	0,51 %	0,15%	0,1 %	6	1	6	3	1	23	7	35	4	1
											4. Levelling									
GLO	0,76 %	0,8 %	0,91 %	1,02 %	0,9 %	0,39 %	0,41 %	0,46 %	0,52 %	0,46 %	≈0	≈0	0	1	0	10	10	13	13	16

ss = small signal (50 W/m²) **ls** = large signal (1000, 500 W/m²)

ARAD: uncertainty analysis – results

	Expanded (%)														
			SS				ls								
	WHW	GRZ	IBK	KSO	SON	wнw	GRZ	IBK	KSO	SON					
DIR	3,33	3,48	4,04	1,72	2,62	1,68	1,46	1,69	1,6	1,64					
GLO	22,88	23,25	23,04	11,84	22,95	2,43	2,49	2,5	2,87	2,25					
DIF	3,86	3,55	4,28	3,51	3,74	1,98	1,97	2,03	2,83	2,66					

- combined expanded uncertainty: 1.46 % 23.25 %
- after correction of directional error and temp dependance: 1.4 % 5.2 %
- BSRN target (which is larger) accuracies: 0.5 % (1.5 W/m²) (DIR), 2 % (5 and 3 W/m²) (GLO, DIF)
- after correction: 70 % of GLO, DIF for **Is** within or very close to BSRN target accuracies
- reduce uncertainty for ss GLO, DIF: DAQ accuracy, annual recalibration, thermal offset correction
- DIR: better instrumentation needed

ZAMG

ss = small signal (50 W/m²)

Is = large signal (1000, 500 W/m²)

ARAD: data policy

- ARAD data freely available for "bona fide research purposes" from ZAMG (<u>klima@zamg.ac.at</u>)
- data from BSRN station SON available at BSRN data archive: <u>http://www.pangaea.de/tools/latest-datasets.rss?q=Project:BSRN+SON</u>
- more informations about ARAD: <u>http://www.zamg.ac.at/strahlung</u>
- publication: Olefs et al.: The Austrian radiation monitoring network ARAD best practice and added value, Atmos. Meas. Tech., 9, 1513-1531, 2016 <u>http://www.atmos-meas-tech.net/9/1513/2016/</u>

improving sunshine duration observations

- Forgan-Method using 1-minute data statistics (mean, min, max) based on 1 Hz samplings of DIR (Forgan and Dyson, 2004).
- $SSD_{true} = SSD_{known} + A * SSD_{unknown} + B$
- $SSD_{known} = DIR_{min} > 120 W/m^2$
- $SSD_{unknown}$: $DIR_{mean} > 120 \frac{W}{m^2} \& DIR_{max} > 120 \frac{W}{m^2} \& DIR_{min} < 120 W/m^2$
- take 1 Hz measurements using a NIP Pyrheliometer as SSD_{true} and find A, B
- test site Vienna: calibration period (6 month), validation period (4 months)

reduction of mean daily differences: 1.8 % (8.9 min.) \rightarrow 0.8 % (3.7 min.)

validation of ECMWF forecasts (T. Haiden)

- monitoring of the operational forecast
- evaluation of new model versions

analysis and forecasts of radiation and snow

INCA HIM ratio Analysis, date: 20130523 1130

- new cloud parameterization scheme for diffuse solar radiation of solar radiation model STRAHLGRID relating MSG-2 satellite cloud types to the ratio of all-sky measured to clear-sky modelled diffuse radiation
- also used in operational snow cover model SNOWGRID
- added-value of ARAD data for Alpine hydrology and cryosphere

ARAD: visual impressions of station Sonnblick

What makes it such a special place ?

- ✓ only summit observatory of the earth above 3000 m, continuously active for 125 years!
 - ✓ uninterrupted meteorological time-series since 1886
 - ✓ today: modern transdisciplinary, environmental observatory (GAW site)

ZAMG Zestratanstalt für Meteorologie und Geodynamik

ARAD: visual impressions of station Sonnblick

ARAD: special modifications at Sonnblick

original inlet of heating/ventilation unit (grid) beneath the sensor platform

lead to reduced airflow and thus to ice formation around glas domes

Michel 1200

measurment errors difference GLO vs. DIF

ARAD: special modifications at Sonnblick

What is the main problem for data quality at Sonnblick?

7 MAR 2013, 06:45 UTC, T -6°C, RH 94%, 61 km/h SW,

Hoarfrost!

"medium to strong" rime event

ARAD: special modifications at Sonnblick

pyrheliometer with heated front window (24 V/2 W heating power) good confidence in thermal offsets: 94 % of DNI nighttime values >= -1 W/m²

ARAD: summary

- ✓ ARAD comprises currently 5 stations following largely BSRN quality standards
- ✓ Sonnblick (3106 m a.s.l.) is BSRN station since 2013
- ✓ ARAD as example for state-of-the-art radiation monitoring at national level
- ✓ detailed uncertainty estimates can give valuable insights into possible improvements
- ✓ large combined expanded uncertainties for small signals of GLO (~50 W/m²) are due to directional errors and can be corrected using the calibration certificates
- ✓ combined expanded uncertainties should be provided operationally to all users
- ✓ the BSRN target accuracy for DIR can only be achieved with improved instrumentation

thank you very much for your attention!

Sonnblick Observatorium - Blick nach Südwesten Richtung Lienzer Dolomiten 30.09.15 07:40 -6.7°C 74% 32km/h NO (f/9.0 1/200s iso100) http://www.foto-webcam.eu/webcam/sonnblick

ZAMG