New Coupled Climate-carbon Simulations from the IPSL Model
Date: Thursday, September 29 @ 11:15:00 MDT
Topic: Carbon Cycle Response to Climate Change


by Patricia Cadule

We have developed a Climate-Carbon coupled model based on the IPSL OAGCM and on two biogeochemical models, ORCHIDEE for the continent and PISCES for the ocean, to investigate the coupling between climate change and the global carbon cycle. We have performed four climate-carbon simulations over the 1860-2100 period in which atmospheric CO2 is interactively calculated. They are :

§ A control coupled simulation with no anthropogenic emissions.

§ A coupled simulation with anthropogenic emissions.

§ A coupled simulation with anthropogenic emissions including non-CO2 greenhouse and sulfate aerosols.

§ An uncoupled carbon simulation with the same anthropogenic emissions as second simulation but for which atmospheric CO2 change has no impact on climate.

Compared to the first IPSL Climate-Carbon coupled model [Dufresne, et al., 2002], the simple carbon models have been replaced by IPSL advanced ocean and land biogeochemical models, respectively PISCES and ORCHIDEE. CO2 is transported in the atmosphere and compared with observations. Comparison with satellite data is also done. We then analyze the coupled and uncoupled simulations, highlight the importance of the climate change both on the oceanic and biosphere sink and estimate the climate-carbon feedback. The results are also compared to the outputs of other models participating in the C4MIP inter-comparison project. Finally, off-line simulations are carried out to perform sensitivity tests (fire, dynamics of land and ocean ecosystems, soil respiration) in order to identify the key processes which govern the simulated response.

Link to Abstract
Link to Slides










This article comes from The 7th International CO2 Conference Web Site
http://icdc7.cmdl.noaa.gov/

The URL for this story is:
http://icdc7.cmdl.noaa.gov//modules.php?name=News&file=article&sid=71