| Proposing a Mechanistic Understanding of Atmospheric CO2 During the late Pleist |
By Peter Koehler
Paleo-climate records in ice cores revealed high
variability in temperature, atmospheric dust content and carbon dioxide. The
longest CO2 record from the Antarctic ice core of the Vostok station
went back in time as far as about 410 kyr BP showing a switch of glacials and
interglacials in all those parameters approximately every 100 kyr during the
last four glacial cycles with CO2 varying between 180-300 ppmv [Petit et al., 1999]. New measurements of dust and the
isotopic temperature proxy deuterium of the EPICA Dome C (EDC) ice core covered
the last 740 kyr, however, revealed glacial cycles of reduced temperature
amplitude [EPICA community members, 2004]. These
new archives offer the possibility to propose atmospheric CO2 for
the pre-Vostok time span as called for in the EPICA challenge [Wolff et al., 2004]. Here, we contribute to this challenge
using a box model of the isotopic carbon cycle [Köhler et
al., 2005] based on process understanding previously derived for
Termination I. Our results show that major features of the Vostok period are
reproduced while prior to Vostok our model predicts significantly smaller
amplitudes in CO2 variations.
Link to abstract Updated! Link to slides
|
|
|
|
| |
Login | |
Related Links | |
Options | |
|