 | Persistence of Nitrogen Limitation over Terrestrial Carbon Uptake |
by Galina Churkina
Because
vegetation growth in the Northern Hemisphere is typically nitrogen-limited,
increased nitrogen deposition could have attenuating effect on rising
atmospheric CO2 by stimulating the accumulation of biomass. Given
the high carbon to nitrogen ratios and long lifetimes of carbon in wood, a most
significant effect of nitrogen fertilization is expected in forests. Forest
inventories indicate that the carbon content of northern forests have increased
concurrently with increased nitrogen deposition since the 1950s [Spiecker et al.,
1996]. In addition, variations in atmospheric CO2 indicate a
globally significant carbon sink in northern mid-latitude forest regions [Schimel et al.,
2001]. It is unclear however, whether elevated nitrogen deposition or other
factors are the primary cause of carbon sequestration in northern forests. We
argue that the elevated nitrogen deposition is unlikely to enhance vegetation
carbon sink significantly because of its differentiating effect on the carbon
sequestration capacity of uneven aged forests and climatic limitations on
carbon sequestration in the Northern Hemisphere. We estimate the potential of
forests with lifted nitrogen limitation to decelerate CO2
concentrations rise in the atmosphere and therefore to mitigate climate
warming. We also outline areas of the Northern Hemisphere which are most
sensitive to increased nitrogen deposition.
Link to abstract
Link to slides
|
|
|
|
| |
Login |  |
Related Links |  |
Options |  |
|