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ABSTRACT 
The oxygen isotopic composition of atmospheric CO2 can help constrain local- to global-scale 
biophysical processes and partition measured net ecosystem CO2 fluxes into gross fluxes. Although 
current models still lack key features controlling gross ecosystem CO18O fluxes, considerable 
improvements have been achieved in the last four years. In this study we examine the influence on 
atmospheric CO18O of 1) a delayed seasonal cycle in soil water isotopes (relative to rain water) and 2) a 
new one-way flux model of night-time leaf respiration [Cernusak et al., 2004]. The latter covaries with 
enhanced night-time stomatal conductance, for which evidence arose recently [e.g. Snyder et al., 2003]. 
 
RESEARCH OUTLINE 
The Merged ECHAM BETHY model (MECBETH) is a global three-dimensional model of δ18O in 
atmospheric CO2 [Cuntz et al., 2003a; 2003b]. It includes all processes described in the pioneering 
publications of Ciais et al. [1997a; 1997b] plus soil invasion [Tans, 1998], reduced carbonic anhydrase 
activity [Gillon and Yakir, 2001] and non-steady-state leaf water enrichment [Dongmann et al., 1974]. It 
was recognised with MECBETH that mean soil water isotopic composition and rain water isotopic 
composition are not accurate predictors of the soil water isotopic composition impacting soil-surface 
CO18O exchange. On the other hand, the importance of respiration relative to assimilation CO18O fluxes is 
probably underestimated in MECBETH. Other factors such as stratospheric 18O enrichment of CO2 due to 
enriched stratospheric ozone are estimated to be of minor importance [Boering et al., 2004; Cuntz, 2002]. 
 
Process descriptions have improved since the last update of MECBETH. For example, 1) Riley et al. 
[2002] treated in detail the isotopic composition of soil water and the soil-surface CO2 flux, 2) Farquhar 
and Cernusak [2005] generalised the description of leaf water isotopic enrichment, and 3) Cernusak et al. 
[2004] reformulated night-time CO18O exchange between plants and the atmosphere. All these 
improvements emphasise respiration CO18O fluxes relative to assimilation CO18O fluxes. As stated above, 
the importance of CO18O respiration fluxes relative to CO18O assimilation fluxes is probably 
underestimated in MECBETH so that the new descriptions potentially improve the model markedly. 
 
However, the importance of the last two descriptions 2) and 3) depends greatly on the behaviour of 
stomatal conductance during evening and night. Historically stomata were assumed to be almost 
completely closed during the night but recent evidence suggests that they might be open at night with as 
much as 30% of maximum daytime stomatal conductance [Barbour et al., 2004; Snyder et al., 2003]. The 
covariance between the one-way flux model of night-time leaf respiration and enhanced stomatal 
conductance at night alters the implications of 2) and 3) and reduces their suggested great influence. 



We therefore hypothesise that a more realistic soil water description could bring measured and modelled 
CO18O into better agreement, whereas the suggested importance of night-time leaf exchange is partly 
offset by enhanced night-time stomatal conductance. 
 
With these model improvements, interpretation of CO18O measurements should contribute to several 
important issues in carbon cycle and global climate change research: for example 1) constraining 
ecosystem gross CO2 exchange, 2) as a strong constraint on biogeochemical models of ecosystem 
exchanges, including land-surface schemes in global circulation models, and 3) helping to interpret the 
effectiveness of land management designed to sequester CO2. 
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