TREND OF THE TOTAL INORGANIC CARBON INCREASE IN THE SUBTROPICAL WESTERN NORTH PACIFIC SINCE EARLY 1990S

M.Ishii¹, S.Saito¹, S.Masuda², A.Nakadate², T.Midorikawa¹, and H.Y.Inoue³

¹ Meteorological Research Institute, JMA, 1-1 Nagamine, Tsukuba, 305-0052 Japan; mishii@mri-jma.go.jp

²Climate and Marine Department, JMA, 1-3-4 Otemachi, Chiyoda, Tokyo 100-8122, Japan

³Graduate School of Environmental Earth Science, Hokkaido University, N10W5, Kita, Sapporo 060-0810 Japan.

ABSTRACT

High-quality data of total inorganic carbon (TCO₂) and other oceanographic parameters have been acquired repeatedly between 1994 and 2003 along 137°E (WOCE P9) in the western North Pacific. They indicate the significant increase in TCO₂, apparent oxygen utilization (AOU) and preformed TCO₂ in the water columns between 20°N and 30°N, in particular, in the North Pacific Subtropical Mode Water (NPSTMW). The increase in the preformed TCO₂ suggests the 0.9 to 1.1 mol m⁻² yr⁻¹ accumulation of the anthropogenic CO₂ in this region. However, the change in the preformed TCO₂ associated with the change in the formation region and/or advection of NPSTMW is also suggested.

INTRODUCTION

The ocean is considered as a major sink of the anthropogenic CO_2 . It is demonstrated by the long-term increase in the CO_2 partial pressure in surface water (pCO_2sw) [*e.g. Inoue and Ishii*, 2005; *Midorikwa et al.*, 2005]. However, observations of the oceanic CO_2 parameters in surface waters and, in particular, in the water columns were limited in time and space. What is lacking is our knowledge on the rate of the anthropogenic CO_2 accumulation and its possible variability associated with the variability in the ocean circulation and biogeochemistry. We will report the trend of TCO_2 increase in the water columns of the deeply ventilated subtropical western North Pacific that includes the NPSTMW and the North Pacific Intermediate Water (NPIW).

OBSERVATIONS

We have repeatedly observed vertical section of TCO₂ together with other oceanographic properties along 137°E in the western North Pacific (Fig.1) in July-August 1994 (WOCE P9), January-February 1997, July 2000, and October-November 2003 using a coulometric method on board the JMA's *R/V Ryofu Maru* and *R/V Keifu Maru*. For all TCO₂ analyses, certified reference material provided by Dr A. G. Dickson in the University of California, San Diego, has been used for quality control.

Fig.1 Location of 137°E in the western North Pacific.

DATA ANALYSES

Data of potential temperature (θ), salinity (*S*), TCO₂ normalized at *S*=35 (NTCO₂), AOU, and preformed NTCO₂ [= (TCO₂-AOU*106/170)*35/*S*] collected below the seasonal thermocline between 20°N and 30°N in the region of the Kuroshio recirculation were taken from the data set of each cruise. In the next, these data in July 1994 were fitted with fourth-order polynomial functions of potential density (σ_{θ}) for σ_{θ} <26.5 and for σ_{θ} ≥26.5, respectively, by least-squares method. The standard deviations of residuals from these functions were 0.152 °C for θ , 0.029 for *S*, 4.3 µmol kg⁻¹ for NTCO₂, 3.6 µmol kg⁻¹ for AOU, and 3.0 µmol kg⁻¹ for preformed NTCO₂. Finally, increases or decreases in θ , *S*, NTCO₂, AOU and preformed NTCO₂ with time were determined by comparing the data collected in 1997, in 2000 and in 2003, respectively, with the fitting curves for the data in 1994.

RESULTS AND DISCUSSION

We have found the significant increases in NTCO₂ (+17.3±3.1 µmol kg⁻¹), AOU (+6.8±2.6 µmol kg⁻¹) and preformed NTCO₂ (+12.9±1.9 µmol kg⁻¹) above 25.7 σ_{θ} density surface in 2003 as compared with those in 1994 (Fig.2). The increase in AOU suggests the slow down of ventilation and/or the change in the biogeochemistry in the NPSTMW and its adjacent waters, but the increase in NTCO₂ can be explained primarily by the increase in preformed NTCO₂, *i.e.*, accumulation of the anthropogenic CO₂. Since the buffer factor in this region is *ca* 9.3, the increase in preformed NTCO₂ is consistent with the mean increase rate of *p*CO₂sw along 137°E (+1.7±0.2 µatm yr⁻¹, *i.e.*, mean TCO₂ increase rate calculated is +1.2±0.1 µmol kg⁻¹ yr⁻¹) [*Midorikawa et al.*, 2005]. The increase of NTCO₂ as well as preformed NTCO₂

from 1994 to 2003 showed a tendency to decrease with depth, and they were $+3.8 \pm 5.0$ μ mol kg⁻¹ and +2.7±1.0 μ mol kg⁻¹, respectively, in the NPIW (26.5 $\leq \sigma_{\theta} \leq$ 27.0) (Table 1). Mean water column integrated increase rate of the preformed NTCO₂ ranged from +0.9±0.2 mol m^{-2} yr⁻¹ to +1.1±0.3 mol m⁻² yr⁻¹, depending on the depth of ventilation. However, it should be noted that NTCO₂ and preformed NTCO₂ have not been increasing monotonously with time. In 1997 when θ and S at 25.0 $\leq \sigma_{\theta} \leq$ 25.5 were higher than in 1994, NTCO₂ and preformed NTCO₂ in those density surfaces were rather lower. In contrast, in 2000 and 2003 when θ and S were lower, NTCO₂ and preformed NTCO₂ were higher. These results suggest that the changes in NTCO₂ and preformed NTCO₂ on an isopycnal surface are more or less affected by the variability in the formation region and/or the advection of the NPSTMW.

Fig.2. Increase of NTCO₂, AOU, and preformed NTCO₂ from 1994 to 2003 (137°E, 20°N - 30°N).

Range of σ_{θ}	Period	θ	S	$\Delta NTCO_2$	ΔΑΟυ	$\Delta preformed NTCO_2$
		°C		µmol kg ⁻¹	µmol kg ⁻	¹ μmol kg ⁻¹
25.0-25.5	1997–1994	$+0.12\pm0.03$	$+0.038\pm0.009$	-4.9±3.1	-0.1 ±4.3	-3.6±1.6
	2000-1994	-0.08 ± 0.09	-0.057 ± 0.031	$+17.5\pm5.7$	+8.1 ±4.6	$+12.2\pm3.0$
	2003-1994	-0.23 ± 0.03	-0.072 ± 0.010	$+17.4\pm3.7$	$+6.5 \pm 3.2$	$+13.0\pm2.1$
26.5 - 27.0	1997–1994	$+0.08\pm0.12$	$+0.013\pm0.021$	-2.3 ± 4.3	$+5.1\pm11.0$) -5.5±2.9
	2000-1994	$+0.18\pm0.14$	$+0.029\pm0.023$	$+3.4\pm3.5$	$+7.3 \pm 9.1$	-1.5 ± 3.9
	2003-1994	+0.11±0.19	$+0.018\pm0.031$	$+3.8\pm5.0$	$+1.3 \pm 5.2$	$+2.7\pm1.0$

Table 1. Increase in NTCO₂, AOU, and preformed NTCO₂ between 20°N and 30°N along 137°E

REFERENCES

- Inoue, H. Y. and M. Ishii (2005), Variations and trends of CO₂ in the surface seawater in the Southern Ocean south of Australia between 1969 and 2002, *Tellus*, 57, 58-69.
- Midorikawa, T., K. Nemoto, H. Kamiya, M. Ishii, and H. Y. Inoue (2005), Persistently strong oceanic CO₂ sink in the western subtropical North Pacific, *Geophys. Res. Lett.*, 32, L05612, doi:10.1029/ 2004GL021952.