# SIMULATIONS OF VARIATIONS OF TROPOSPHERIC CO $_2$ CONCENTRATION OVER JAPAN

<u>M. Ishizawa<sup>1</sup></u>, S. Maksyutov<sup>2</sup>, T. Nakazawa<sup>3</sup>, and S. Aoki<sup>3</sup>

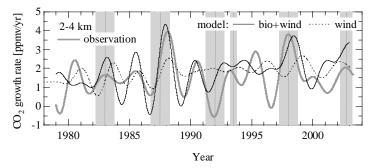
 <sup>1</sup>University of Toronto, AQRB/MSC, 4905 Dufferin Street, Toronto, M3H 5T4 Canada; Misa.Ishizawa@ec.gc.ca
<sup>2</sup> Center for Global Environmental Research National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; shamil@nies.go.jp
3Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Sendai 980-8578, Japan; nakazawa@mail.tains.tohoku.ac.jp, aoki@mail.tains.tohoku.ac.jp

### ABSTRACT

In order to investigate the long-term and inter-annual variations in the atmospheric  $CO_2$  concentration record obtained by aircraft measurements over Japan, we have conducted numerical experiments using a transport model with a process-based ecosystem model. The climate-induced anomalies of net biospheric flux account for a significant part of the inter-annual variations in the  $CO_2$  growth rate. The results indicate that year-to-year change in observed vertical  $CO_2$  gradient is mainly caused by the inter-annual variability in atmospheric transport, likely related to El Niño events.

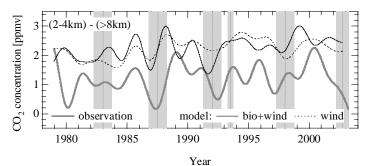
## **INTRODUCTION**

Since 1979 aircraft measurements for tropospheric  $CO_2$  concentration over Japan have been continued by Tohoku University approximately at a rate of once a month [*Nakazawa et al.*, 2001]. This long  $CO_2$ record provides valuable information on the global carbon cycle, showing spatial and temporal variability in tropospheric  $CO_2$  concentration at northern mid-latitude. Here we examine the long-term and interannual variations of  $CO_2$  concentration.


Many previous studies reported that much of the inter-annual variability in atmospheric  $CO_2$  could be accounted for by an imbalance of  $CO_2$  exchange between the atmosphere and the biosphere [e.g., *Fujita et al.*, 2003]. Recently, *Murayama et al.* [2004] suggested that variability in the atmospheric circulation pattern is needed to be taken into account to understand the year-to-year change in the observed  $CO_2$  growth rate in mid- and high-latitudes in the Northern Hemisphere. In this study, we have attempted to examine the climate perturbations on the observed inter-annual  $CO_2$  variations through the changes in ecosystem activities and atmospheric transport, using a transport model and process-based ecosystem model. The impact of the recent rapid increase of anthropogenic  $CO_2$  emission by East Asian countries on the long-term trend of atmospheric  $CO_2$  concentration over Japan is also studied.

## **METHODS**

We use the NIES (National Institute of Environmental Studies) global atmospheric transport model [*Maksyutov and Inoue*, 2000] and the Biome BioGeochemical Cycle model (Biome-BGC) [*Thornton et al.*, 2002]. The two models are offline-coupled and both are run at a horizontal resolution of  $1^{\circ} \times 1^{\circ}$ , driven by the meteorology based on the 6-hourly NCEP (National Centers for Environmental Prediction) reanalysis data [*Fujita et al.*, 2003]. For the model experiments, a set of annually-balanced net biospheric CO<sub>2</sub> fluxes is produced by adjusting the imbalance of Biome-BGC-simulated CO<sub>2</sub> fluxes for each year. Fossil fuel-CO<sub>2</sub> fluxes are varied from year-to-year according to the statistical estimates of emission rate and its global distribution. For comparison of the simulated and observed atmospheric CO<sub>2</sub> concentrations, they are first vertically grouped by 2 km-intervals, and then seasonal cycles are subtracted.


#### **RESULTS AND DISCUSSIONS**

The simulation results indicate that the inter-annual variations of the  $CO_2$  growth rate are mainly caused by the climate-induced anomalies of net biospheric  $CO_2$  flux (Fig.1). The inter-annual changes in atmospheric transport are identified to make some contribution for the observed  $CO_2$  growth rates in 1980s, but less correlation is found in 1990s.



**Fig.1.** Simulated and observed  $CO_2$  growth rates at altitude of 2-4 km over Japan. For model results, "bio+wind" denotes that both of biospheric  $CO_2$  fluxes and wind fields are inter-annually changing, and "wind" means that only wind fields are changing year to year. The shaded area indicates El Niño periods.

Simulated vertical gradients of  $CO_2$  concentration are relatively similar to, but somewhat smaller in magnitude then the observation (Fig. 2). The model results show that the changes of atmospheric transport contribute significantly to the inter-annual variability in  $CO_2$  vertical gradient. It is interesting to note that the  $CO_2$  vertical gradient tends to be smaller when El Niño event occurs. This pattern suggests that atmospheric mixing is enhanced by such a climate event. Furthermore, over the last two decades, the  $CO_2$  vertical gradient over Japan has been increasing slightly but steadily (about 0.02ppmv/yr), which might be attributed to increasing fossil fuel  $CO_2$  emission rates in East Asian countries due to their rapid industrialization.



**Fig.2.** Simulated and observed vertical difference of  $CO_2$  concentration between the altitude of 2-4 km and tropopause (above altitude of 8km).

#### REFERENCES

- Fujita, D., M. Ishizawa, S. Maksyutov, P. E. Thornton, T. Saeki, and T. Nakazawa (2003), Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere model and an atmospheric transport model, *Tellus*, 55B, 530-546.
- Maksyutov, S. and G. Inoue (2000), Vertical profiles of radon and CO<sub>2</sub> simulated by the global atmospheric transport model, *CGER supercomputer activity report, CGER/NIES-I039-2000*, 7, 39-41.
- Murayama, S., S. Taguchi, and K. Higuchi (2004), Interannual variation in the atmospheric CO<sub>2</sub> growth rate: Role of atmospheric transport in the Northern Hemisphere, *J. Geophys. Res.*, *109*, doi: 10.1029/2003JD003729.
- Nakazawa, T., S. Aoki, S. Sugawara, M. Ishizawa, S. Morimoto, F. Matsumoto and T. Saeki (2001), Variations in the concentration and carbon isotopic ration of tropospheric carbon dioxide over Japan and their implication for the global carbon cycle, In *Proceedings of the 6th International Carbon Dioxide Conference Vol. I*, pp. 35-38, Sendai, Japan 1-5 October.
- Thornton, P. E., B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D. S. Ellsworth, A. H. Goldstein, R. K. Monson, D. Hollinger, M. Falk, J. Chen, and J. P. Sparks (2002), Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. *Agric. For. Meteorol.*, 113, 185-222.