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ABSTRACT 
Inverse modeling methods are now commonly used for estimating surface fluxes of carbon dioxide, using 
atmospheric mass fraction measurements combined with a numerical atmospheric transport model.  Michalak et al. 
[2004] recently developed a geostatistical approach to flux estimation that takes advantage of the spatial and/or 
temporal correlation in fluxes and does not require prior flux estimates.  In this work, a geostatistical implementation 
of a fixed-lag Kalman smoother is developed and applied to the recovery of gridscale carbon dioxide fluxes for 1997 
– 2001 using data from the NOAA-CMDL Cooperative Air Sampling Network. 
 
INTRODUCTION AND METHODOLOGY 
The goal of this work is to estimate monthly carbon dioxide fluxes using data from the NOAA-CMDL Cooperative 
Air Sampling Network without using a prior estimate of the flux distribution.  We first develop a geostatistical 
implementation of a fixed-lag Kalman smoother to decrease the computational cost of gridscale geostatistical 
inversions. Second, we incorporate information on auxiliary environmental variables to further constrain fluxes. 
Third, we apply the developed methods to the recovery of monthly-averaged carbon dioxide fluxes for 1997-2001. 
 
Geostatistical inverse modeling 
The geostatistical approach to inverse modeling is a Bayesian approach in which the prior probability density 
function is based on an assumed form for the spatial and/or temporal correlation of the surface fluxes to be 
estimated.  This differs from the traditional Bayesian approaches, where the prior information is in the form of initial 
surface flux estimates.  Geostatistical flux estimates are not subject to some of the limitations of traditional Bayesian 
inversions, such as potential biases created by the choice of prior fluxes and aggregation error resulting from the use 
of large regions with prescribed flux patterns.  The geostatistical approach is also ideally suited to inversions at fine 
spatial scales.  The objective function used in the solution of a linear geostatistical inverse problem is: 
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where H is a matrix of sensitivities of the observations z to the discretized unknown surface flux distribution s, R is 
the model-data mismatch covariance matrix, Xβ is the model of the mean of the flux distribution, where X contains 
known information and β are unknown drift coefficients (e.g. the fluxes can have a constant but unknown mean), 
and the flux covariance matrix Q is based on a spatial and/or temporal correlation structure.  The inverse problem 
involves solving for both β and s, and the form of the solution is therefore different from the classical Bayesian 
setup [Michalak et al. 2004].  No prior flux estimates are used, and this term in the objective function is replaced by 
a description of the spatial (and/or temporal) covariance of deviations of fluxes from their mean behavior. 
 
Fixed-lag Kalman smoother 
Gridscale inversions become computationally prohibitive as the period for which fluxes are estimated increases.  In 
order to address this issue, we develop a geostatistical implementation of a fixed-lag Kalman smoother [Bruhwiler et 
al. 2005]. The Kalman smoother allows for the sequential estimation of fluxes using an appropriate portion of 
available observations, while taking into account the inferred temporal covariance between fluxes estimated for 
various times. The form of the solution developed in Bruhwiler et al. [2005] was compatible with the classical 
Bayesian approach.  For the case of monthly flux estimates, independently obtained flux estimates (typically from 
flux inventories) are used as prior information the first time a given month of fluxes is estimated, and the latest (a 
posteriori) estimate is updated in the subsequent steps using additional months of atmospheric data.  In the 
geostatistical approach, the system needs to account for the unknown components of the model of the mean (β) in 
obtaining the first estimate of a given month’s fluxes, but needs to use the latest (a posteriori) estimates for 
subsequent estimates of a given month’s fluxes.  This requires a substantial modification to the form of the Kalman 
smoother because each step through the smoother involves both months being estimated for the first time (with no 



prior flux estimate), and months being estimated for at least the second time (with the latest flux estimates used as 
priors).  The details of the mathematical development are presented in an upcoming paper [Michalak et al. in prep.] 
  
Use of auxiliary data and model of the mean   
In Michalak et al. [2004], land and ocean fluxes were assumed to tend toward different but constant means.  Because 
deviations from these means were correlated, this simple model of the mean still allowed for complex flux patterns. 
In the current work, we model the carbon flux 
mean using objective auxiliary variables known 
to be associated with the global carbon cycle 
(e.g. precipitation, temperature, land use, 
population density, Normalized Difference 
Vegetation Index (NDVI)) (see Fig. 1). This 
allows the model greater flexibility, while still 
not requiring the posterior fluxes to follow any 
pre-prescribed flux patterns.  The model of the 
mean is constrained by a covariance matrix 
which assumes separate correlation structures 
over land and ocean.  In addition, carbon fluxes 
over the land are influenced by different 
auxiliary variables than those over the ocean. A 
second pass at this geostatistical inverse 
modeling approach will use more “subjective” variables in the model of the mean, such as the output of biospheric 
models and extrapolated measurements of ocean carbon dioxide concentrations. This approach will be closer to the 
traditional Bayesian approach. 
 
SAMPLE SETUP 
In the presented setup, the sensitivity of the atmospheric measurements to surface fluxes is calculated using an 
adjoint implementation of the TM3 atmospheric transport model [Rödenbeck et al. 2003].  Data from 39 sites from 
the NOAA-CMDL cooperative air sampling network are used to constrain the fluxes.  Surface fluxes are estimated 
first using a constant mean model [Michalak et al. 2004], and second using a model that contains both a constant 
component and components that take into account auxiliary environmental data.  For both cases, the Kalman 
smoother is used with the geostatistical inverse modeling approach to estimate global monthly carbon dioxide fluxes 
from 1997 through 2001 on a 3.75° latitude by 5.0° longitude grid.   
 
RESULTS AND DISCUSSION 
Results indicate that even the constant mean model yields flux estimates that agree well with independent flux 
information for well-constrained areas of the globe (e.g. temperate North America).  The complex mean model 
provides additional information at smaller scales, and allows for sharper discontinuities in the flux distributions, 
corresponding to changes in environmental regimes (e.g. different land cover types).  Because these estimates do not 
take into account bottom-up flux estimates that are typically used as prior information in Bayesian inversions, they 
provide an independent source of information.  These estimates are particularly interesting in interpreting (i) carbon 
fluxes in regions that are less well constrained by atmospheric data and where Bayesian inversions largely revert to 
prior estimates with little reduction in uncertainty, and (ii) interannual flux variability that is not captured by bottom-
up estimates (e.g. ENSO effects on ocean fluxes).  One critical factor to consider is the trade-off between including 
additional information in the inversion setup to reduce the flux uncertainty versus relying more heavily on the 
atmospheric data.  The ultimate setup should always depend on the available data, the specific scientific question to 
be answered, and the assumptions that are considered acceptable for a given application.  
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