PRECISION REQUIREMENTS FOR SPACE-BASED X_{CO2} DATA

C. E. Miller¹, D. Crisp¹, P. L. DeCola², S. C. Olsen³, J. T. Randerson⁴, P. Rayner⁵, D. J. Jacob⁶, D. Jones⁷, P. Suntharalingam⁶, S. C. Doney⁸, S. Pawson⁹, H. Boesch¹, L. R. Brown¹, B. J. Connor¹⁰, I. Y. Fung¹¹, D. O'Brien¹², R. J. Salawitch¹, S. P. Sander¹, B. Sen¹, P. Tans¹³, G. C. Toon¹, P. O. Wennberg¹⁴, S. C. Wofsy⁶, Y. L. Yung¹⁴, Z. Kuang¹⁴, V. Natraj¹⁴, D. Feldman¹⁴, Z. Yang¹⁴, M. Christi¹²

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA, charles.e.miller@jpl.nasa.gov

²NASA Headquarters, Washington, DC USA

³Los Alamos National Laboratory, Los Alamos, New Mexico USA

⁴Earth Systems Science, University of California, Irvine, California USA

⁵Laboratoire des Sciences du Climat et de l'Environment (LSCE), Universete Paris, Paris, France

⁶Deapartment of Earth and Atmospheric Sciences, Harvard University, Cambridge, MA, USA

⁷Deapartment of Atmospheric Sciences, University of Toronto, Toronto, Ontario, Canada

⁸Woods Hole Oceanographic Institution, Woods Hole, Massachusetts USA ⁹Goddard Space Flight Center, Greenbelt, Maryland USA

¹⁰National Institute of Water and Atmosphere (NIWA), Lauder, New Zealand

¹¹Department of Atmospheric Sciences, University of California, Berkeley, California

¹²Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

¹³Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

¹⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA

ABSTRACT

The Orbiting Carbon Observatory (OCO) mission will deliver space-based observations of atmospheric CO_2 with the potential to resolve many of the uncertainties in the spatial and temporal variability of carbon sources and sinks. Our assessments of the measurement requirements for space-based remote sensing of atmospheric CO_2 conclude that the data must support retrievals of the column-averaged CO_2 dry air mole fraction, X_{CO2} , with precisions of 3 to 4 ppm to resolve the annually averaged gradients between the Northern and Southern hemispheres, but higher precision (1 to 2 ppm) will be needed to resolve East-West gradients and questions like the location and spatial extent of the Northern Hemisphere terrestrial carbon sink. These conclusions are derived from the results of observational system simulation experiments (OSSEs) and synthesis inversion models [*Rayner and O'Brien*, 2001; *O'Brien and Rayner*, 2002; *Rayner et al.*, 2002]. The X_{CO2} precision requirements also considered the OCO mission design, the amplitude of X_{CO2} spatial and temporal gradients, and the relationship between X_{CO2} data precision and regional scale surface CO_2 flux uncertainties inferred from X_{CO2} data.

We ingested simulated OCO X_{CO2} data into synthesis inversion models to quantify the dependence of inferred surface-atmosphere CO₂ flux uncertainties on X_{CO2} precision. Regional scale (~10⁶ km²) CO₂ surface flux uncertainties scale almost linearly with the X_{CO2} data precision for X_{CO2} precisions ranging from 1 to 5 ppm (0.3 to 1.4%). The dense, uniform spatiotemporal sampling of the space-based X_{CO2} retrievals will reduce the uncertainties in inferred surface-atmosphere CO₂ fluxes compared to the fluxes inferred from the GLOBALVIEW-CO₂ network [*Schnell et al.*, 2001] even if the space-based X_{CO2} data have precisions on the order of 5 ppm on regional scales. Regional scale X_{CO2} precisions of 1 to 2 ppm (0.3 to 0.5%) are needed to improve our understanding of the temporally varying carbon cycle processes such as the Northern Hemisphere terrestrial carbon sink, fossil fuel and biomass combustion, and the response of land biosphere and ocean to seasonal and interannual climate variability. Our OSSEs revealed that the impact of systematic X_{CO2} biases on CO₂ flux uncertainties depends on the spatial and temporal extent of each bias since CO₂ sources and sinks are inferred from regional-scale X_{CO2} gradients. Source-sink inversion modeling demonstrated that systematic biases as small as 0.1 ppm could be identified in the X_{CO2} data product. Constant X_{CO2} biases on continental to global scales do not affect the CO₂ flux uncertainties since they introduce no error into the X_{CO2} gradients. Small undetected biases occurring on sub-regional scales (< 10^6 km^2) will appear as small increases in the random noise level and should not affect the CO₂ flux inversions. Persistent geographic biases at the regional to continental scale will have the largest impact on the inferred CO₂ surface fluxes. The design of the OCO validation program has emphasized the capability to identify and correct regional to continental scale X_{CO2} biases.

Several outstanding bias issues remain to be quantified more accurately. The "clear-sky" bias introduced by the OCO sampling strategy must be understood with respect to the CO_2 diurnal cycle and the passage of weather systems through a location between OCO observational revisits. The sampling protocols of the FTS validation network [*Yang et al.*, 2002] and the GLOBALVIEW-CO₂ network will each introduce unique biases into these data; all data must be analyzed in "bias-free" form for accurate inverse modeling [*Olsen and Randerson*, 2004]. Synthesis inversion biases due to inadequate atmospheric transport modeling must also be removed.

A demonstration of the ability of the OCO measurement concept to constrain regional fluxes of CO₂ from Asia of the OCO X_{CO2} data was provided by simulated sampling of the TRACE-P CO₂ data fields [*Suntharalingam et al.*, 2004]. This OSSE quantified the relationship between X_{CO2} data precision and the ability to discriminate surface CO₂ fluxes from 5 distinct regions in East and Southeast Asia. It was found that space-based X_{CO2} measurements with 1 ppm (0.3%) precision constrain carbon fluxes originating from Asia on monthly time scales. These experiments further demonstrate that OCO-like X_{CO2} data can distinguish regional CO₂ fluxes from China and India.

REFERENCES

- O'Brien, D. M., and P. J. Rayner (2002), Global observations of the carbon budget, 2, CO₂ column from differential absorption of reflected sunlight in the 1.61 um band of CO₂, *J. Geophys. Res.*, *107*(D18), 4354, doi:10.1029/2001JD000617.
- Olsen, S. C., and J. T. Randerson (2004), Differences between surface and column atmospheric CO₂ and implications for carbon cycle research, *J. Geophys. Res.*, 109, D02301, doi:10.1029/2003JD003968.
- Rayner, P. J. and D. M. O'Brien (2001), The utility of remotely sensed CO₂ concentration data in surface source inversions, *Geophys. Res. Lett.*, 28, 175-178.
- Rayner, P. J., R. M. Law, D. M. O'Brien, T. M. Butler, and A. C. Dilley (2002), Global observations of the carbon budget, 3, Initial assessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO₂ from space, J. Geophys. Res., 107(D21), 4557, doi:10.1029/2001JD000618.
- Schnell, R. C., D. B. King, and R. M. Rosson (2001), Climate Modeling and Diagnostics Laboratory Summary Report No. 25 (1998-1999), Report No. 25, 2001 and GLOBALVIEW-CO₂: Cooperative Atmospheric Integration Project- Carbon Dioxide, NOAA CMDL, Boulder. CO.

http://www/cmdl/noaa/gov/ccgg/globalview/co2

- Suntharalingam, P., D. J. Jacob, P. I. Palmer, J. A. Logan, R. M. Yantosca, Y. Xiao, M. J. Evans, D. G. Streets, S. L. Vay, and G. W. Sachse (2004), Improved quantification of Chinese carbon fluxes using CO₂/CO correlations in Asian outflow, *J. Geophys. Res.*, 109, D18S18, doi:10.1029/2003JD004362.
- Yang, Z. H., G. C. Toon, G. C., J. S. Margolis, J. S., and P. O. Wennberg (2002), Atmospheric CO₂ retrieved from ground-based near IR spectra, *Geophys. Res. Lett.*, 29(9), doi:10.1029/2001GL014537.