ASSESSMENT OF AIR-SEA CO2 EXCHANGE RATES IN THE WORLD'S OCEANS USING BOMB $^{14}\mathrm{C}$ INVENTORIES

<u>T.-H. Peng</u>¹, R. Wanninkhof¹, R.M. Key², A. Macdonald³

¹NOAA/AOML ²Princeton University ³WHOI

ABSTRACT

The inventory of nuclear bomb produced ${}^{14}C$ (bomb ${}^{14}C$) in the ocean is a major constraint of CO₂ exchange between the atmosphere and ocean in numerical models and analytical estimates of gas exchange. New ¹⁴C data in the ocean, improved methods of separating the bomb ¹⁴C from the natural background of ¹⁴C in the ocean, and reassessment of previous inventories are challenging the canonical estimates of the air-sea gas transfer. An improved method of separating natural ¹⁴C from the observed ¹⁴C distribution is being used to estimate the bomb ¹⁴C distribution and inventory. We use GEOSECS ¹⁴C data to represent the global distribution in 1975, and the new WOCE dataset for 1995 to get two time representations of inventory. To reduce the bias error for averaging zonal bomb ¹⁴C inventories from limited observation stations during the GEOSECS times, we use zonal averages given by Peacock [2004] for re-evaluation of 1975 air-sea CO₂ exchange rates. Zonal inventories for 1995 will be from GLODAP mapping results using WOCE data [Key et al. 2004]. Lateral transport models developed by Broecker et al. [1985] are used to assess the regional air-sea CO₂ exchange rates as well as an appropriately weighted global mean. Four independent methods of estimating bomb ¹⁴C inventory in the ocean show that the original estimate by Broecker et al. [1995] could be about 25% too high, the air-sea CO₂ exchange rates derived from this original bomb ¹⁴C inventory could also be too high by a similar amount. Results of this assessment will be presented.

REFERENCES

- Broecker, W. S., T.-H. Peng, H. G. Ostlund, M. Stuiver. The distribution of bomb radiocarbon in the ocean, Journal of Geophysical Research, 90, 6953-6970, 1985.
- Broecker, W.S., S. Sutherland, W. Smethie, T.-H. Peng, and G. Ostlund, Oceanic radiocarbon: separation of the natural and bomb components, Global Biogeochem. Cycles, 9, 263-288, 1995.
- Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J. Bullister, R.A. Feely, F. Millero, C. Mordy, T.-H. Peng, A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031,doi:10.1029/2004GB002247, 2004.
- Peacock, S. Debate over the ocean bomb radiocarbon sink: Closing the gap. Global Biogeochem. Cycles, 18, doi:10.1029/2003GB002211, 2004.