THE MID-LATITUDE WESTERLIES, ATMOSPHERIC CO₂ AND CLIMATE CHANGE DURING THE ICE AGES

J.R. Toggweiler¹, J.L. Russell², S.R. Carson¹

¹GFDL/NOAA ²Princeton University

ABSTRACT

An idealized general circulation model is constructed of the ocean's deep circulation and CO_2 system that reproduces the main features of glacial-interglacial CO_2 cycles, including the tight correlation between atmospheric CO_2 and Antarctic temperatures, the lead of Antarctic temperatures over CO_2 at terminations, and the shift of the ocean's ¹³C minimum from the North Pacific to the Atlantic sector of the Southern Ocean. The model is based on a new idea about the nature of the glacial-interglacial cycles in which the driving force is independent of the orbital forcing and is not in the ocean. The key to glacial-interglacial transitions, we claim, is a relationship between the mid-latitude westerly winds, atmospheric CO_2 , and the mean state of the atmosphere. Cold glacial climates seem to have equatorward-shifted westerlies, which allow more respired CO_2 to accumulate in the deep ocean. Warm climates like the present have poleward-shifted westerlies that flush respired CO_2 out of the deep ocean.