OBSERVATIONS OF ATMOSPHERIC CO₂ CONCENTRATION AND ITS CARBON ISOTOPIC RATIO IN CHINA

<u>S. Sugawara</u>¹, S. Aoki², T. Nakazawa², J. Tang³, D. Zhang³, G. Shi⁴, Y. Liu⁴, S. Morimoto⁵, S. Ishidoya², T. Saeki⁶, T. Hayasaka⁶, and M. Ishizawa⁷

¹Institute of Earth Science, Miyagi University of Education, Sendai 980-0845, Japan; sugawara@staff.miyakyo-u.ac.jp ²Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, Japan

³Chinese Academy of Meteorological Sciences, Beijing 100081, P. R. China

⁴Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P. R. China

⁵National Institute of Polar Research, Tokyo 173-8515, Japan

⁶Research Institute for Humanity and Nature, Kyoto 602-0878, Japan

⁷Department of Geography, The University of Toronto, Canada

ABSTRACT

Systematic measurements of the CO₂ concentration and its carbon isotopic ratio (δ^{13} C) have been carried out at 7 locations in China since March or July 2003. Seasonal cycles of the CO₂ concentration and δ^{13} C were clearly observable, especially at Longfengshan, Shangdianzi and Fukang. The δ^{13} C value of source producing the seasonal CO₂ cycle at each site, δ_s , was estimated from the observed CO₂ and δ^{13} C seasonal cycles. The average value of δ_s derived for the 6 sites was calculated to be -25.6 (±1.8) ‰, which is larger than those observed at mid-latitudes in the western Pacific region, probably due to smaller discrimination of ¹³C by C₄ plants in the continent of China.

1. INTRODUCTION

Systematic measurements of the atmospheric CO_2 concentration in continental regions are important for a better understanding of the global carbon cycle. The data from those measurements are required especially for numerical carbon cycle studies using 3-D atmospheric transport models. However, the CO_2 measurements at continental sites are rather limited at present, especially in the Asian region. China is one of the most important regions for the cycles of CO_2 and CH_4 , due not only to a vast area with forests and agricultural land but also to rapidly growing consumption of fossil fuel. Considering such a situation, we started to collect air samples at 7 locations in China, with subsequent laboratory analyses of CO_2 and CH_4 concentrations and the carbon isotopic ratio, $\delta^{13}C$, of CO_2 . In this paper, we report the observed results of the CO_2 concentration and $\delta^{13}C$, and discuss spatial differences of their seasonal cycles and carbon isotopic signatures between China and the western Pacific region.

2. EXPERIMENTAL PROCEDURES

Air sampling has been carried out at 7 locations in China since March or July 2003. Our sampling sites are shown in Fig. 1. In addition to the Chinese GAW site at Mt. Waliguan, we newly established 6 sampling sites at Longfengshan, Shangdianzi, Taishan, Lin-an and Huangshan in the eastern part of China, and Fukang in the northwestern part of China, to cover a wide geographical area. The air sample was collected into a stainless-steel flask weekly or biweekly, and sent to our laboratory in Beijing to determine the CO₂ and CH₄ concentrations by using NDIR and FID-GC, respectively. The standard gases used for this analysis were calibrated by using the standards of Tohoku University. Pure CO₂ was then extracted cryogenically from the remaining air in the flask for isotopic analysis. Details of our mass spectrometry are described elsewhere [*Nakazawa et al.*, 1993].

3. RESULTS AND DISCUSSIONS

Fig. 1. Map showing the locations of our sampling sites in China. Triangles represent mountain sites with altitudes of over 1500 m.

Observed results of the CO₂ concentration and δ^{13} C are shown in Fig.2. The seasonal cycles of the CO₂ concentration and δ^{13} C are clearly seen. In order to extract the average seasonal cycle, a digital-filtering technique was applied to the data [*Nakazawa et al.*, 1997a]. The data of CO₂ and δ^{13} C observed in the western Pacific region [*Nakazawa et al.*, 1997b; *Morimoto et al.*, 2000] were also analyzed to compare with the results in China. The seasonal cycles of both components are especially enhanced at Longfengshan and Shangdianzi in the northeastern part of China. Peak-to-peak amplitudes of 30 ppmv and 1.5 ‰ at Longfengshan are more than twice as large as those observed at similar latitudes in the western Pacific region. Such large seasonal cycles are thought to be caused by active biospheric uptake and release of CO₂. The large seasonal amplitudes were also observed at Fukang. The cause is mainly due considerably CO_2 to high concentrations and low $\delta^{13}C$ values observed in winter. Since high CO₂ concentrations were accompanied by high CH₄ concentrations and low oxygen isotopic ratios of CO₂, it is suggested that CO₂ emitted due to human local activities was

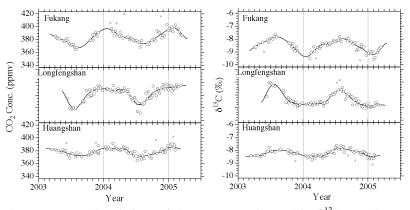


Fig. 2. Temporal variations of CO_2 concentration and its $\delta^{13}C$ at Fukang, Longfengshan, and Huangshan. Solid lines are the best-fit curves of the data.

gradually accumulated in the strong inversion layer formed near the ground surface in very cold winter. The relationships between the seasonal CO₂ and δ^{13} C cycles were found to be approximated well with a linear function at all sites. In order to estimate the δ^{13} C value of source producing the seasonal CO₂ cycle at each site, δ_s , we adopted following mass balance equation introduced by *Miller and Tans* [2003],

$$\delta_{obs}C_{obs} - \delta_{bg}C_{bg} = \delta_{S}(C_{obs} - C_{bg})$$

Here, δ and C denote $\delta^{13}C$ and CO2, respectively, and subscripts obs and bg mean observed and background values, respectively. The values of δ_{bg} and Cbg were determined by using a digital-filtering technique. In order to calculate δ_s as a slope in equation (1), the 'reduced major axis' technique was applied to a linear regression. The δ_s values derived for the Chinese sites are compared in Fig. 3 with those from observations in the western Pacific region during the period from 1984 to 2000. The δ_S values in China range widely from -28 to -23 %. In general, the δ_s value depends on the photosynthetic discrimination, the δ^{13} C values of CO₂ emitted by ecosystem respiration and fossil fuel combustion, and their flux magnitudes. If we assume that the seasonal CO₂ cycles observed in China were governed primarily by terrestrial biospheric activities, δ_s represents an average δ^{13} C of CO₂ exchanged seasonally between the atmosphere and the terrestrial biosphere. The average value of δ_S for the 6 Chinese sites, excluding Fukang, was calculated to be $-25.6 (\pm 1.8)$ ‰. This value is higher than those (-27.3 ± 0.3) ‰ on average) at similar latitudes in the western Pacific region. Physiological studies suggested that C4 grass dominates over C₃ grass in the eastern part of China (Woodward et al.,

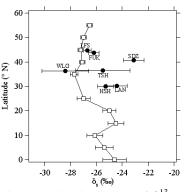


Fig. 3. Latitudinal plots of δ^{13} C of source producing the seasonal CO₂ cycle (δ_s) for Chinese sites (closed circles). The results obtained by shipboard measurements in the western Pacific region are also shown (open squares).

2004). Considering that the photosynthetic discrimination of ¹³C by C₄ plants is smaller than that by C₃ plants, it is thought that the contribution of C₄ plants to the atmospheric CO₂ variations is fairly large in the continent of China.

REFERENCES

- Miller, J. B. and Tans, P. P. 2003. Calculating isotopic fractionation from atmospheric measurements at various scales, *Tellus* 55B, 207-214.
- Morimoto, S., Nakazawa, T., Higuchi, K., Aoki, S. 2000. Latitudinal distributions of atmospheric CO₂ sources and sinks inferred by δ^{13} C measurements from 1985 to 1991, *J. Geophys. Res.* 105, 24315-24326.
- Nakazawa, T., Morimoto, S., Aoki, S., and Tanaka, M. 1993. Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan. *Tellus* 45B, 258-274.
- Nakazawa, T., Ishizawa, M., Higuchi, K., Trivett, N. B. A. 1997a. Two curve fitting methods applied to CO₂ flask data, *Environmetrics* 8, 197-218.
- Nakazawa, T., Morimoto S., Aoki S., and Tanaka M. 1997b. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys, Res. 102, 1271-1285.
- Woodward, F. I., Lomas, M. R., Kelly, C. K. 2004. Global climate and the distribution of plant biomes, *Phil. Trans. R. Soc. Lond. B* 359, 1465-1476.