PRELIMINARY CONSTRAINTS ON FOSSIL-FUEL CO₂: COMPARISON OF TRACERS ¹⁴CO₂, CO AND SF₆

J.C. Turnbull¹, J.B. Miller^{2,3}, S.J. Lehman¹, R.J. Sparks⁴, J. Southon⁵, and P.P. Tans³

¹INSTAAR, University of Colorado, Boulder, CO 80309-0450; jocelyn.turnbull@colorado.edu ²Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO 80309 ³NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO 80305 ⁴Rafter Radiocarbon Laboratory, Lower Hutt, New Zealand ⁵University of California at Irvine, Irvine, CA 92697

ABSTRACT

We use the theoretically ideal tracer ¹⁴CO₂ to estimate the fossil fuel CO₂ enhancement in boundary layer air at two sites in New England and Colorado. Improved Δ^{14} C measurement precision of 1.6-2.6‰ provides fossil fuel CO₂detection capability of 0.8-1.5 ppm. Using the tracers CO and SF₆, we obtain two additional independent estimates of the fossil fuel CO₂ component, and we assess the biases in these methods by comparison with the ¹⁴CO₂-based estimates. Large differences are observed between the SF₆based estimates and those from the ¹⁴CO₂ and CO methods. The CO-based estimates show seasonally coherent biases, underestimating fossil fuel CO₂ in winter and overestimating in summer.

INTRODUCTION

Precise measurement of atmospheric CO_2 concentrations can be used to estimate the net surface exchange flux of carbon, but cannot distinguish CO_2 contributions from net biological exchange and combustion of fossil fuels. Separation of the two fluxes can be obtained by estimating the (relatively large) fossil fuel component from economic emissions inventories. Any uncertainty in these inventories, which can be expected to increase with decreasing temporal and spatial scales of analysis, will translate directly to a bias in the magnitude (and, possibly, sign) of the biological exchange signal. Independent estimates of fossil fuel CO_2 emissions with quantifiable uncertainties are therefore needed.

¹⁴CO₂ provides a theoretically ideal tracer for fossil fuel derived CO₂ (C_{ff}) because ¹⁴C is entirely lost to radioactive decay in fossil fuels, whereas all other CO₂ sources contain ¹⁴C in concentrations close to that of ambient air [*Levin et al., 2003; Meijer et al., 1996*]. The indirect tracers CO and SF₆ can also provide estimates of C_{ff}, by assuming a correlation (R_T) between emissions of the tracer CO or SF₆ and C_{ff} [*Potosnak et al., 1999; Bakwin et al., 1998*]. While measurements of these tracers may be more precise than for ¹⁴CO₂, uncertainty and variability in R_T may reduce the accuracy of the C_{ff} estimate. In the case of CO, other sources and sinks may also bias the results. We assess the biases in these methods by comparison with the ¹⁴CO₂-based C_{ff} estimates.

RESULTS

We estimate the $C_{\rm ff}$ contribution during winter pollution events at Niwot Ridge, Colorado using the ${}^{14}\text{CO}_2$, CO and SF₆ methods. The ${}^{14}\text{CO}_2$ method appears to accurately detect $C_{\rm ff}$, whereas both the CO and SF₆ methods underestimate $C_{\rm ff}$ by several ppm.

We calculate the boundary layer $C_{\rm ff}$ using the ${}^{14}{\rm CO}_2$, CO and SF₆ methods in 17 samples collected over New England from January to December 2004 (Fig. 1a). SF₆-based results are significantly more variable and at times imply implausibly large boundary layer enrichments. Although broadly consistent, differences between the ${}^{14}{\rm CO}_2$ - and CO- based results are significant with respect to the magnitude of the seasonal variation in the biological exchange of carbon. We infer the biological enrichment or depletion of CO₂ in the boundary layer (C_{bio}) as:

$$C_{bio} = C_{obs} - C_{bg} - C_{ff}$$

where C_{bl} and C_{ft} are the measured boundary layer and free troposphere CO_2 concentrations. When C_{ff} is assumed to be zero (black squares in fig. 1b), we obtain a reasonable seasonal cycle in C_{bio} , but there is considerable scatter, possibly because known variability from the fossil fuel component has not been accounted for.

Using ¹⁴CO₂ to determine and remove $C_{\rm ff}$ yields a seasonal cycle in $C_{\rm bio}$ that is reasonable, with small winter respiration release and strong summer uptake of CO₂. For some spring and fall sampling dates, the ¹⁴CO₂ method allows us to identify net uptake of CO₂, whereas net release would have been assumed without correcting for the $C_{\rm ff}$ estimate from ¹⁴CO₂. Correcting for C_{ff} using the CO method also gives a reasonable seasonal cycle in C_{bio}, but displays coherent seasonal bias relative to the ¹⁴CO₂ method (Fig. 1c). The summertime bias is likely related to summertime production of CO by hydrocarbon oxidation and forest fires.

REFERENCES

- Bakwin, P.S., P.P. Tans, J.W.C. White, and R.J. Andres, Determination of the isotopic (¹³C/¹²C) discrimination by terrestrial biology from a global network of observations, *Global Biogeochem. Cycles*, *12* (3), 555-562, 1998.
- Levin, I., B. Kromer, M. Schmidt, and H. Sartorius, A novel approach for independent budgeting of fossil fuel CO₂ over Europe by ¹⁴CO₂ observations, *Geophys. Res. Lett.*, 30 (23), 2194, 2003.
- Meijer, H.A.J., H.M. Smid, E. Perez, and M.G. Keizer, Isotopic characterization of anthropogenic CO₂ emissions using isotopic and radiocarbon analysis, *Phys. Chem. Earth*, *21* (5-6), 483-487, 1996.
- Potosnak, M.J., S.C. Wofsy, A.S. Denning, T.J. Conway, J.W. Munger, and D.H. Barnes, Influence of biotic exchange and combustion sources on atmospheric CO₂ concentrations in New England from observations at a forest flux tower, J. Geophys. Res., 104 (D8), 9561-9569, 1999.

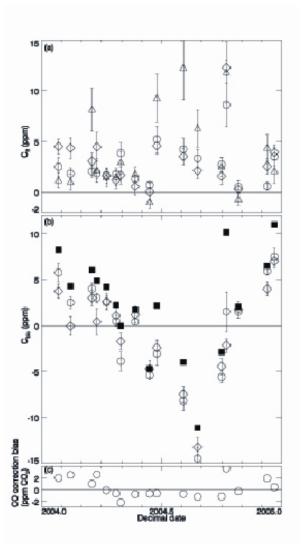


Fig. 1. Boundary layer measurements over New England at either HFM ($42^{\circ}32^{\circ}N$, $72^{\circ}10^{\circ}W$) or NHA ($42^{\circ}57^{\circ}N$, $72^{\circ}37^{\circ}W$): (a) C_{ff} determined using the ¹⁴CO₂ method (diamonds), CO method (circles) and SF₆ method (triangles); (b) C_{bio} calculated using the ¹⁴CO₂ method, CO method, and assuming no fossil fuel component (black squares); (c) The bias in the CO method relative to the ¹⁴CO₂ method. Error bars are 1σ errors including measurement precision and 25% uncertainty in R_T for the CO and SF₆ methods.