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Motivation
We can determine the fate of carbon removed from the atmosphere by 
measuring the rates at which atmospheric O2 and CO2 are decreasing 
and increasing, respectively  [e.g. Houghton et al., 2001].  Land and 
ocean fluxes of carbon can be determined from measured O2 and CO2 
trends according to:

fland = -(β/α)ffuel+ (1/2.49) dO2/dt

focean = -d[(CO2/0.471) + (O2/2.49)]/dt - [(α - β)/α]ffuel - fcement

where the factor of β (currently 1.44) is the fossil fuel combustion 
stoichiometry and α (~1.1) is the stoichiometry of terrestrial photo-
synthesis/respiration [Battle et al., 2000].  The stoichiometries for 
fossil fuel combustion are relatively well known [Keeling, 1988], but 
those associated with the land biota carry a larger uncertainty [Sever-
inghaus, 1995]. Improved knowledge of the factor 1.1 will translated 
directly to more precise values of fland and focean.

In addition, we expect the terrestrial biotic stoichiometry to vary spa-
tially and temporally.  Time series measurements of the stoichiometry 
should provide insight into the functioning of the ecosystem and the 
role of external influences on plant physiology.

Figure 2: Schematic diagram of the O2 & CO2 analysis system currently 
installed at Harvard Forest.  “MFC” indicates a mass flow controller.

Approach
To determine the stoichiometry of terrestrial biotic activity, we use 
precise, continuous, concurrent measurements of O2 and CO2.  The 
slope of a plot of multiple measurements of O2 vs. CO2 yields α.

We make our measurements at the Harvard Forest Environmental 
Measurement Site in central Massachusetts; a mature mixed hard-
wood and conifer forest (Fig. 1).  Air is drawn alternately from in-
takes at ~8m and 30m, providing measurements within and above the 
canopy.

Measurements are performed using an instrument whose design (Fig. 
2) closely follows that of Stephens et al. [2001].  O2 measurements 
are made with an Sable Systems Oxzilla II fuel cell analyzer, while 
CO2 is measured with a LiCor LI-7000 NDIR analyzer.

Figure 1:  The O2/CO2 analyzer installed in 
the Harvard Forest EMS instrument shack.

Figure 3:  The suite of standard gases 
installed in the Harvard Forest EMS in-
strument shack.

Instrument Design
Fundamentally, the instrument is a pair of commercial ana-
lyzers, connected in series.  All analyses are differential 
measurements, made against a working tank, which is itself 
periodically measured against a set of 4 standard tanks, in-
dependently calibrated on the WMO CO2 scale, and the SIO 
O2 scale (Fig. 3).  All gas streams are cryogenically dried to 
a dew point of -80C prior to analysis.  Flows of both sample 
and standard gases are maintained at 50scc/m using MKS 
mass-flow controllers.  Pressures in the two gas streams are 
held within ~1% of each other, and a changeover valve al-
ternately directs the sample and standard gases to the two 
cells of the O2 analyzer (Fig. 2).

The instrument is controlled and monitored by a laptop 
computer running LabViewTM.  The computer logs data, 
flow rates, temperatures, etc. and controls the choice of 
sample line (high/low), the changeover valve, and the Val-
co rotary valves that initiate instrument calibrations us-
ing the standard tanks.  Remote control of the instrument 
is achieved using a DSL internet connection and PC Any-
whereTM.

Instrument Performance

The when calculating α, the limiting precision is 
that of the O2 analyzer.  We characterize the perfor-
mance of our instrument by the deadtime following 
a changeover (~40s, Fig. 4), the scatter of measure-
ments during live cycles (0.004 permil, Fig. 4) and 
the drift-limited precision of the instrument (Fig. 5).  

Due to an unfortunate lightning strike, we do not yet 
have data from Harvard Forest.

Figure 4:  10 records of the absolute O2 concentration (uncal-
ibrated) of tank air immediately following the de-energizing 
of the changeover valve.  The plot shows a stabilization after 
~40s, with a scatter about the mean of the remaining 140s of 
data of 0.004 permil (1 σ) for each of the 10 records.
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Figure 5: The drift-limited precision, derived from a represen-
tative, continuous analysis of unswitched tank air.  For a given 
dead-time (see Fig 4), this plot shows the fractional preci-
sion that can be expected from one complete changeover cycle 
for any specified changeover period.  Live time is defined as 
changeover period - deadtime [Keeling et al., 2004].
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