International CO, Conference VII, Sept. 25-30, 2005, Boulder, CO

Synthesis of Top-Down and Bottom-Up Scaling of Regional Terrestrial Carbon Dioxide Fluxes **Implications for Global Terrestrial CO, Flux**

A.R. Desai*, W. Wang, D.M. Ricciuto, B.D. Cook, F.A. Heinsch, K.J. Davis, A. Noormets, J. Chen, P.V. Bolstad, S.J. Richardson, N. Miles, M. Uliasz, P.R. Moorcroft *Corresponding author contact: The Pennsylvania State University, Dept. of Meteorology, University Park, PA 16802 USA 814-865-9617 adesai@psu.edu

MOTIVATION

- Quantifying regional scale (10-1000 km) land-atmosphere exchange of carbon dioxide is vital for understanding spatio-temporal
 variability in global CO₂ and the impact of global changes in climate, CO₂ and land use at the landscape scale
- · Global ecosystem and tracer-transport inverse models perform poorly at characterizing regional-scale CO, exchange in complex landscapes, while low spatial-density intensive stand-level measurements cannot easily scale to the landscape
- Roles of disturbance, forest management and wetlands on carbon exchange remain poorly constrained
- Unique opportunity to construct verifiable, regional carbon balances as part of multi-investigator intensive sampling in complex, managed forested ecosystems of the upper Midwest (Chequamegon Ecosystem-Atmosphere Study: http://cheas.psu.edu)

Land cover variability

- Wetlands, clearcuts and natural disturbances occur in small non-uniformly distributed patches that aggregate to more than 30% of the landscape and are difficult to assess with coarse-resolution (> 250 m) remote sensing (Fig. 3)
- Biometric and chamber-based measurements of hardwoods around tall tower appear less productive than eddy covariance observations.
- Highest productivity in fully-stocked stands occurs at intermediate terrain positions - too much moisture shifts composition to sparser stands of less productive species and too little towards lower growth in primarily upland species
- Effect confounded in productive middle by disturbance-induced changes in species composition, age, and stocking

x10 km around tall tower from 1-m solution IKONOS. 1-km MODIS classi

Flux tower observations

- Stand-level eddy covariance flux towers have observed significant spatial variability in net and gross carbon dioxide fluxes, most of which can be explained by stand age and type (Fig. 4)
- Multi-year record of CO, exchange at the tall tower shows surrounding forests and wetlands are persistent annual source of CO₂ to the atmosphere (Fig. 5)
- Interannual variability in fluxes is general coherent among sites, statistically significant and clearly correlated with climate variability
- Model of climate variables parameterized with Bayes Monte-Carlo techniques explains seasonal variability in tall tower fluxes (Fig. 6)

• Preliminary runs, without forestry, show large variation in carbon exchange of potential vegetation with stand age since disturbance and significant respiraserved to modeled seasonal gross ecosystem duction (GEP) and ecosystem respiration (FR

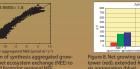
Multi-site synthesis aggregation

• Eddy covariance stand-level measurements were scaled using a combination of remote sensing, forest inventory stand age data and simple climate-driven models of carbon flux

Figure 4. Observed net carbon ex

Day of Year Figure 5. Six-year tall tower cumo not ecosystem exchange of CO₂

Ecosystem modeling The Ecosystem Demography (ED) model, which in-corporates vegetation heterogeneity, canopy struc-


ture, stand age, disturbance and forest management,

was parameterized with regional biometric data and

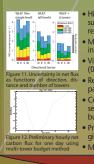
meteorology, historical records of land management and high-resolution satellite land cover maps

unction of stand type and age

- Mature hardwood sites dominate the landscape, but large respiratory sources from wetlands and recently disturbed sites cannot be neglected
- Scaled fluxes agree with footprint extended tall tower fluxes (Fig. 7), but
- also show tall tower is unique in its large respiratory fluxes (Fig. 8)

tion in young stands

APPROACH


- Region has globally unique 396-m tall tower and 12+ fixed and roving eddy covariance flux towers, which use high-frequency measurements of atmospheric turbulence and CO, concentrations to assess whole stand-scale carbon exchange (Fig. 1)
- Simultaneous application of top-down and bottom-up scaling can be used to converge on regional carbon fluxes
- Bottom-up scaling uses ecosystem models and remote sensing to aggregate stand-scale measurements to the regional scale
- Top-down scaling uses tall-tower and/or regional network of atmospheric measurements (Fig. 2) to infer regional carbon balance

Footprint decomposition and extension

- Tall tower fluxes sample different patches or foot-prints of landscape as a function of wind direction, speed and atmospheric stability/conditions
- Remotely sensed landcover and footprint models can be used to decompose regional fluxes
- Results suggest that wetlands or recently disturbed stands around the tall tower are large unobserved sources ecosystem respiration (Fig. 9)
- Footprint extension, which rescales decomposed fluxes into regional estimates unbiased by footprint

nuxes into regional growing-season net uptake of carbon that is greater than that shown by the tall tower when integrated directly, not weighted for re-respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net respiraton (RR-light green) and respiraton (RR-light green) and net re

Tall tower boundary-layer budget Multiple vertical levels of atmospheric CO. concentration at the tall tower can be used to infer regional carbon balance at monthly timescales

• Method requires accurate measurement of boundary-layer height and entrainment rates

 Several complementary attempts show promising results when compared to

1 1 5 5

directly-observed tall tower flux at 396 average net regional carbon flux for budget method (orange) and towers

• Virtual tall tower method can be applied to scale surface layer

(0-100 m) measurements to boundary layer average (0-2000 m) • Regional flux uncertainty expected to be significantly smaller compared to single-tower budget method (Fig. 11)

• Concentration network and tropospheric aircraft or remotely sensed column CO, can also be used with simpler boundary-layer budget methods to infer daytime flux in convective conditions

 Preliminary budget results show encouraging ability to assess regure 12. Preliminary hourly net gional carbon exchange (Fig. 12)

arbon flux for one day using which were budget method
• More information on top-down inversions at Davis et al. poster

TOP-DOWN SCALING

IMPLICATIONS

- Encouraging consistency is seen in top-down and bottom-up methods, but the discrepancies are substantially larger than desired level of consistency (Fig. 13)
- Current results support hypothesis that regional carbon balances limited to sampling dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the observed variability of carbon fluxes nor match the inferred regional carbon flux in complex regions
- · Work in underway in collecting observations on poorly represented cover types, and obtaining information of forest structure so as to improve the degree of detail needed to observe and model regional carbon budgets in this complex landscape, needed to observe and model regional carbon obsigers in an songer in the same of regional, which is a fundamental, enabling step required to achieve the aims of regional, continental and global scale carbon cycle analyses

Daily Integrated NEE (gC m⁻²

ACKNOWLEDGEMENTS

This work was funded in part by grants from the Dept. of Energy (DOE) National Institute for Global Environ-mental Change, DOE Office of Biological & Environmental Research, National Science Foundation, NASA Earth Science, NOAA Climate Monitoring and Diagnostics Lab, USDA Forest Service Northern Global Change Research Program and the USDA Forest Service North Central Research Station. We also thank the many site land owners/managers, field crew members, students, technicians and engineers who made this work possible.

Seventh International Carbon Dioxide Conference – Sept. 25-30, 2005 – Poster Session

Synthesis of top-down and bottom-up scaling of regional terrestrial carbon dioxide fluxes: Implications for global terrestrial CO₂ flux

A.R. Desai, W. Wang, D.M. Ricciuto, B.D. Cook, F.A. Heinsch, K.J. Davis, A. Noormets, J. Chen, P.V. Bolstad, S.J. Richardson, N. Miles, M. Uliasz and P.R. Moorcroft

Ankur R Desai

Research Assistant / Ph.D. Candidate <u>The Pennsylvania State University</u> <u>Department of Meteorology</u>

503 Walker Building University Park, PA 16802 USA Phone: (814) 865-9617 Mobile: (814) 441-0505 Fax: (814) 865-3663 Office: Walker 416 Email: <u>adesai@psu.edu</u> Web: <u>http://met.psu.edu/~adesai</u>

I am a Ph.D. candidate working with Dr. Kenneth J Davis. My research examines the impact of land cover variability, forest management and disturbance on regional exchanges of carbon dioxide and water vapor between ecosystems and the atmosphere. My research relies on a high-density network of eddy covariance flux towers, high-precision atmospheric boundary layer trace gas measurements, airborne CO₂ profiling, satellite remote sensing and ecosystem models used as part of the Chequamegon-Ecosystem Atmosphere Study in the upper Midwest, USA. I am currently looking for post-doctoral, entry-level faculty or other research positions beginning August 2006. Please feel free to visit my website or contact me if you have any questions.

Education

Pennsylvania State University, University Park, PA, Ph.D. Meteorology, expected May 2006 University of Minnesota, Minneapolis, MN, M.A. Geography, 2000 Oberlin College, Oberlin, OH, B.A. Environmental Studies & Computer Science, 1997

Selected Publications

- **Desai, A.R.**, Bolstad, P.V., Cook, B.D., Davis, K.J., Carey, E.V., 2005. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. *Agricultural and Forest Meteorology* 128(1-2): 33-55, doi:10.1016/j.agformet.2004.09.005.
- **Desai, A.R.**, Davis, K.J., Senff, C., Ismail, S., Browell, E.V., Stauffer, D.R. and Reen, B.P., 2005. A case study on the effects of heterogeneous soil moisture on mesoscale boundary layer structure in the southern Great Plains, USA. Part I: Simple prognostic model, *Boundary Layer Meteorology*, in press, doi:10.1007/s10546-005-9024-6.
- **Desai, A.R.**, Noormets, A.N., Bolstad, P.V., Chen, J., Cook, B.D., Davis, K.J., Euskirchen, E.S., Gough, C.M., Martin, J.G., Ricciuto, D.M., Schmid, H.P., Tang, J.W. and Wang, W., 2005. Influence of vegetation and surface forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling, *Agricultural and Forest Meteorology*, in review