

Ben McNeil Centre for Environmental Modelling and Prediction, University of New South Wales, Sydney

Nicolas Metzl LOCEAN, CNRS, Institut Pierre Simon Laplace., Paris, France

> Bob Key Princeton University, New Jersey, USA

Richard Matear CSIRO - Marine Research, Hobart

Acknowledgements: Thanks to the organising committee and UNESCO for funding my travel to this meeting!

Southern Ocean - Zonation and Circulation

STF- sub-tropical Front
SAF - sub-Antarctic Front
PF - Polar Front
AD - Antarctic Divergence
UCDW - Upper Circumpolar Deep Water
SAMW - sub-Antarctic Mode Water
AAIW - Antarctic Intermediate Water

Mean Annual CO₂ Flux via Takahashi pCO_2 database

•From this, Southern Ocean is a considerable net CO₂ sink (~0.6PgC/yr)

• Most uncertainty in the Southern Ocean CO_2 flux

Problems with the pCO_2 database in the Southern Ocean

UNSW

- Seasonal sampling bias
- Inter-annual sampling bias

Concept to estimate the air-sea CO_2 flux

- I) Gather all available DIC/ALK surface measurements and normalise the anthropogenic CO₂ signal to a given year (1995)
- 2) Derive empirical fits for surface DIC/ALK using standard hydrographic measurements (T,S,nuts). Similar to previous studies that derive these empirical fits (Feely et al, 2002; Millero et al, 1998, Lee et al, 2000)
- 3) Extrapolate these fits using the known seasonal cycles of T,S,nuts from the World Ocean Atlas 2001
- 4) Calculate the seasonal pCO₂ distribution from the extrapolated seasonal cycles of DIC/ALK
- 5) Determine the seasonal and annual air-sea CO₂ flux and associated uncertainties.

Advantage: Not subject to seasonal/interannual biases since the extrapolations are based on standard hydro parameters whose seasaonal cycles are well known

Disadvantage: Indirect determination of pCO_2 and reliant on uncertain choice of CO_2 dissociation constants

Step I) Gather all available DIC/ALK surface measurements Fit surface DIC measurements using more regularly sampled hydrographic measurments (temp, sal, nurients)

Derive Empirical fits for surface DIC / ALK

$$DIC_{obs} = \alpha_0 + \sum_{i=1}^n \alpha_i P_i + \varepsilon$$

DIC= f(temp, sal, nitrate, silicate, oxygen) S.E = ±8umol/kg n=668

> ALK=f(temp,sal) S.E= ±9umol/kg

- Similar to previous regression applications only using more data (eg Feely et al, 2002, Lee et al, 2000, Millero et al, 1998)
- No change to the fit with season
- •No strong residual pattern indicating potential biases

Step 2) Extrapolate using World Ocean Atlas climatology 2001

•Results in a full seasonal cycle for DIC and ALK in the Southern Ocean

Test the results with direct DIC observations

2200 Winter DIC 2150 DIC (umol/kg) Summer 2100 2050 -65 -70 -60 -55 -50 -45 -40 Latitude

Reproduces
 the meridional
 DIC structure
 and seasonal
 drawdown quite
 well

•Winter to summer drawdown of ~30umol/kg

measurements

Step 4) Calculate the CO_2 flux

Uncertainty Estimate from Monte-Carlo Analysis

Propagation of uncertainties

- DIC ~ \pm 8umol/kg, ALK ~ \pm 9umol/kg
- •Wind ~ $\pm 2m/s$
- •CO₂ dissociation constants ~ \pm 10uatm
- •Final integrated error $\sim \pm 0.26$ PgC/yr

Zonal Comparison with Takahashi pCO_2 database

Important Points

- •In general higher pCO_2 than Takahashi
- Strong winter pCO₂ source south of the PF (~50degS)

2

3

-4

-3

-2

Air-sea CO2 Flux (mol/m2/yr)

- -Direct and indirect pCO_2 suggests a source of CO_2 south of the PF
- Probably associated with ventilation of deep waters and inadequate biological drawdown
- Takahashi seems to be underestimating winter source

Southern Ocean Flux Mechanisms

Slightly Revised Schematic from Niki Gruber

Summary of recent observational estimates for SO CO_2 uptake

		Net CO ₂ flux (Pg C/yr)		
Methodology	Reference	40-50°S	50-60°S	60-70°S
Oceanic Inversion	[Gloor et al., 2003]	-0.4		-0.1
TRANSCOM-2 Atmospheric Inversions	[Gurney et al., 2002]	-0	-0.3	
Atmospheric Inversion	[Roy et al., 2003]	-0.2 ± 0.2		± 0.2
Oceanic pCO ₂ climatology – NCEP 10m				
winds	[Takahashi et al., 2002] - corrected	-0.45 to -0.35		o –0.35
Summer/winter pCO ₂ measurments	[Metzl et al., 2005]	-0.1		.1
Summer/winter pCO ₂ measurments	[Metzl et al., 1999]	-1		
Oceanic/Atmospheric Inversion	[Jacobson et al., 2005]	-0.4±0.3		
Oceanic DIC/ALK climatology – using		-0.47±0.25	0.16±0.08	0.12 ± 0.08
NCEP 10m winds and sea-ice effects on air- sea gas exchange	This Study	-0.19±0.26		

•Methods are converging suggesting a moderate Southern Ocean CO_2 sink (~0.3PgC/yr)

NB: Needs to be a consistent definition of the Southern Ocean within these methods

Importance of including silicate and phosphate when calculating pCO_2 in the Southern Ocean

Total Alkalinity

$$\begin{aligned} ALK_{TOTAL} &= \left[HCO_{3}^{-}\right] + 2\left[CO_{3}^{2-}\right] + \\ \left[B(OH)_{4}^{-}\right] + \left[OH^{-}\right] + \\ \left[HPO_{4}^{2-}\right] + 2\left[PO_{4}^{3-}\right] + \left[SiO(OH)_{3}^{-}\right] + \\ \left[NH_{3}\right] + \left[HS^{-}\right] \dots \\ -\left[H^{+}\right] - \left[HSO_{4}^{-}\right] - \\ \left[HF\right] - \left[H_{3}PO_{4}\right] \end{aligned}$$

•Without including Sil/Phos results in an underestimation of pCO_2 by ~8uatm!

• Models need to include these terms when calculating pCO_2 in the Southern Ocean

CEM

•Surface DIC can be empirically derived in the Southern Ocean (~8umol/kg), useful for all types of carbon cycle analysis

•Empirically-derived pCO_2 distribution implies a strong sub-Antarctic CO_2 sink (~0.5PgC/yr), which is partially offset by a CO_2 source south of the Polar Front (~0.3PgC/yr)

• Implies the Southern Ocean to be a moderate CO_2 sink (~0.2PgC/yr) and is in relative agreement with other independent methods

• Method could be improved by implementing a tri-carbon sampling strategy for each sample in order find out optimal CO_2 dissociation constants for the SO

 $^{\circ}$ Important to include silicate/phosphate in calculating pCO $_{\rm 2}$ from DIC/Alk in the Southern Ocean for modelling studies

• Finally, there needs to be a consistent agreement in defining the northern latitude extent of the Southern Ocean for all differing methodologies

