## CRITICAL THINKING ACTIVITY: SUNSPOTS AND CLIMATE CHANGE

In 1893, E. Walter Maunder, the superintendent of the Royal Greenwich Observatory in England, discovered data that showed that the Sun had changed drastically in recent times and that for a period of about 70 years, 1645-1715, sunspot activity had all but stopped. The total number of sunspots for this period was less than what is seen in an average year today and came to be known as the Maunder Minimum. During this same time period, the Northern Hemisphere experienced unusually cold weather for a long period of time. In North America and Europe, rivers froze, glaciers grew, crops failed and people starved. The yearly averages of sunspot numbers are shown in the graph below. It is clear that there was very little sunspot activity from about 1650-1720, and that it coincides with the time known as The Little Ice Age.


Graph of sunspot activity 1600-1800
Maunder used the data from these observations to develop a hypothesis about a connection between changes in the output of solar energy and changes in the Earth's climate. Over the next decades, the "coincidence" that the Sun's cycle of activity seemed to have switched off exactly during the coldest decades of modern history attracted a lot of attention. Other researchers naturally wondered whether they might be able to connect climate changes with solar variations with more success. Unfortunately, the Sun appeared to be stable over the period of human civilization and attempts to discover variations in weather and connect them with the 11-year sunspot cycle, or other solar cycles extending to a few centuries long, gave results that were vague and got a welldeserved bad reputation

From one century to another, evidence accumulated suggesting that the Sun does change, at least superficially. From observation and research into historical climate data, scientists noticed a pattern in the number of sunspots. About every 11 years, the number of sunspots reaches a high and then decreases again and is known as the solar sycle. During this eleven-year cycle, the sunspot number increases-solar maximum and decreases-solar minimum. other features that could affect climate are found to rise and fall along with the sunspot number.

The next crucial question was whether a rise in the Sun's activity could explain the global warming seen in the 20th century? By the 1990s, there was an unconfirmed answer: minor solar variations could have been partly responsible for some past fluctuations... but future warming from the rise in human induced greenhouse gases was far outweighing any solar effects.

## ANALYSIS

1. What did Walter Maunder discover about sunspot activity ?
2. Why did Maunder think that there might be a connection between sunspots and Earth's climate?
3. Aside from indicating a change in the Sun's magnetic activity, what else do sunspots tell us?
4. From your graph, what can you say about the cycles of sunspots?
5. How long are sunspot cycles?
6. List the years that the sunspot numbers were the highest.
7. What should these years tell you about Earth's climate?
8. What would you expect the climate conditions to be when the numbers are low?
9. What other information would you need to support your 2 previous answers?
10. What pattern emerges when sunspot numbers are plotted over a period of time?
11. What is the average time between periods of maximum sunspot activity?
12. Predict the years for the next to sunspot maxima.
13. Predict the years for the next two sunspot minima.
14. What additional patterns do you see when you observe the data over a longer period of time compared to observing the data for a shorter period of time?
15. Why is it important to study data over a long period of time before drawing conclusions?

## DATA TABLE 1: Sunspot Numbers 1700-1850

| Year | Sunspot <br> Number |  | Year | Sunspot Number |  | Year | Sunspot Number |  | Year | Sunspot Number |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1700 | 5 |  | 1738 | 111 | M | 1776 | 19.8 |  | 1814 | 13.9 |  |
| 1701 | 11 |  | 1739 | 101 |  | 1777 | 92.5 |  | 1815 | 35.4 |  |
| 1702 | 16 |  | 1740 | 73 |  | 1778 | 154.4 | M | 1816 | 45.8 | M |
| 1703 | 23 |  | 1741 | 40 |  | 1779 | 125.9 |  | 1817 | 41.1 |  |
| 1704 | 36 |  | 1742 | 20 |  | 1780 | 84.8 |  | 1818 | 30.1 |  |
| 1705 | 58 | M | 1743 | 16 |  | 1781 | 68.1 |  | 1819 | 23.9 |  |
| 1706 | 29 |  | 1744 | 5 | m | 1782 | 38.5 |  | 1820 | 15.6 |  |
| 1707 | 20 |  | 1745 | 11 |  | 1783 | 22.8 |  | 1821 | 6.6 |  |
| 1708 | 10 |  | 1746 | 22 |  | 1784 | 10.2 | m | 1822 | 4 |  |
| 1709 | 8 |  | 1747 | 40 |  | 1785 | 24.1 |  | 1823 | 1.8 | m |
| 1710 | 3 |  | 1748 | 60 |  | 1786 | 82.9 |  | 1824 | 8.5 |  |
| 1711 | 0 |  | 1749 | 80.9 |  | 1787 | 132 | M | 1825 | 16.6 |  |
| 1712 | 0 | m | 1750 | 83.4 | M | 1788 | 130.9 |  | 1826 | 36.3 |  |
| 1713 | 2 |  | 1751 | 47.7 |  | 1789 | 118.1 |  | 1827 | 49.6 |  |
| 1714 | 11 |  | 1752 | 47.8 |  | 1790 | 89.9 |  | 1828 | 64.2 |  |
| 1715 | 27 |  | 1753 | 30.7 |  | 1791 | 66.6 |  | 1829 | 67 |  |
| 1716 | 47 |  | 1754 | 12.2 |  | 1792 | 60 |  | 1830 | 70.9 | M |
| 1717 <br> 1718 | 63 | M | 1755 | 9.6 | m | 1793 | 46.9 |  | 1831 | 47.8 |  |
| 1718 \| | 60 |  | 1756 | 10.2 |  | 1794 | 41 |  | 1832 | 27.5 |  |
| 1719 | 39 |  | 1757 | 32.4 |  | 1795 | 21.3 |  | 1833 | 8.5 | m |
| 1720 | 28 |  | 1758 | 47.6 |  | 1796 | 16 |  | 1834 | 13.2 |  |
| 1721 | 26 |  | 1759 | 54 |  | 1797 | 6.4 |  | 1835 | 56.9 |  |
| 1722 | 22 |  | 1760 | 62.9 |  | 1798 | 4.1 |  | 1836 | 121.5 |  |
| 1723 | 11 | m | 1761 | 85.9 | M | 1799 | 6.8 | m | 1837 | 138.3 | M |
| 1724 | 21 |  | 1762 | 61.2 |  | 1800 | 14.5 |  | 1838 | 103.2 |  |
| 1725 | 40 |  | 1763 | 45.1 |  | 1801 | 34 |  | 1839 | 85.7 |  |
| 1726 | 78 |  | 1764 | 36.4 |  | 1802 | 45 |  | 1840 | 64.6 |  |
| 1727 | 122 | M | 1765 | 20.9 |  | 1803 | 43.1 |  | 1841 | 36.7 |  |
| 1728 | 103 |  | 1766 | 11.4 | m | 1804 | 47.5 | M | 1842 | 24.2 |  |
| 1729 | 73 |  | 1767 | 37.8 |  | 1805 | 42.2 |  | 1843 | 10.7 | m |
| 1730 | 47 |  | 1768 | 69.8 |  | 1806 | 28.1 |  | 1844 | 15 |  |
| 1731 | 35 |  | 1769 | 106.1 | M | 1807 | 10.1 |  | 1845 | 40.1 |  |
| 1732 | 11 |  | 1770 | 100.8 |  | 1808 | 8.1 |  | 1846 | 61.5 |  |
| 1733 | 5 | m | 1771 | 81.6 |  | 1809 | 2.5 |  | 1847 | 98.5 |  |
| 1734 | 16 |  | 1772 | 66.5 |  | 1810 | 0 | m | 1848 | 124.7 | M |
| 1735 | 34 |  | 1773 | 34.8 |  | 1811 | 1.4 |  | 1849 | 96.3 |  |
| 1736 | 70 |  | 1774 | 30.6 |  | 1812 | 5 |  | 1850 | 66.6 |  |
| 1737 | 81 |  | 1775 | 7 | m | 1813 | 12.2 |  |  |  |  |

## DATA TABLE 2: Sunspot Numbers 1851-2015

| Year | Sunspot Number |  | Year | Sunspot Number |  | Year | Sunspot <br> Number |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1851 | 64.5 |  | 1907 | 62 |  | 1960 | 112.3 |  |
| 1852 | 54.1 |  | 1908 | 48.5 |  | 1961 | 53.9 |  |
| 1853 | 39 |  | 1909 | 43.9 |  | 1962 | 37.6 |  |
| 1854 | 20.6 |  | 1910 | 18.6 |  | 1963 | 27.9 |  |
| 1855 | 6.7 |  | 1911 | 5.7 |  | 1964 | 10.2 | m |
| 1856 | 4.3 | m | 1912 | 3.6 |  | 1965 | 15.1 |  |
| 1857 | 22.7 |  | 1913 | 1.4 | m | 1966 | 47 |  |
| 1858 | 54.8 |  | 1914 | 9.6 |  | 1967 | 93.8 |  |
| 1859 | 93.8 |  | 1915 | 47.4 |  | 1968 | 105.9 | M |
| 1860 | 95.8 | M | 1916 | 57.1 |  | 1969 | 105.5 |  |
| 1861 | 77.2 |  | 1917 | 103.9 | M | 1970 | 104.5 |  |
| 1862 | 59.1 |  | 1918 | 80.6 |  | 1971 | 66.6 |  |
| 1863 | 44 |  | 1919 | 63.6 |  | 1972 | 68.9 |  |
| 1864 | 47 |  | 1920 | 37.6 |  | 1973 | 38 |  |
| 1865 | 30.5 |  | 1921 | 26.1 |  | 1974 | 34.5 |  |
| 1866 | 16.3 |  | 1922 | 14.2 |  | 1975 | 15.5 |  |
| 1867 | 7.3 | m | 1923 | 5.8 | m | 1976 | 12.6 | m |
| 1868 | 37.6 |  | 1924 | 16.7 |  | 1977 | 27.5 |  |
| 1869 | 74 |  | 1925 | 44.3 |  | 1978 | 92.5 |  |
| 1870 | 139 | M | 1926 | 63.9 |  | 1979 | 155.4 | M |
| 1871 | 111.2 |  | 1927 | 69 |  | 1980 | 154.6 |  |
| 1872 | 101.6 |  | 1928 | 77.8 | M | 1981 | 140.4 |  |
| 1873 | 66.2 |  | 1929 | 64.9 |  | 1982 | 115.9 |  |
| 1874 | 44.7 |  | 1930 | 35.7 |  | 1983 | 66.6 |  |
| 1875 | 17 |  | 1931 | 21.2 |  | 1984 | 45.9 |  |
| 1876 | 11.3 |  | 1932 | 11.1 |  | 1985 | 17.9 |  |
| 1877 | 12.4 |  | 1933 | 5.7 | m | 1986 | 13.4 | m |
| 1878 | 3.4 | m | 1934 | 8.7 |  | 1987 | 29.4 |  |
| 1879 | 6 |  | 1935 | 36.1 |  | 1988 | 100.2 |  |
| 1880 | 32.3 |  | 1936 | 79.7 |  | 1989 | 157.6 | M |
| 1881 | 54.3 |  | 1937 | 114.4 | M | 1990 | 142.6 |  |
| 1882 | 59.7 |  | 1938 | 109.6 |  | 1991 | 145.7 |  |
| 1883 | 63.7 | M | 1939 | 88.8 |  | 1992 | 99.3 |  |
| 1884 | 63.5 |  | 1940 | 67.8 |  | 1993 | 54.6 |  |
| 1885 | 52.2 |  | 1941 | 47.5 |  | 1994 | 29 |  |
| 1886 | 25.4 |  | 1942 | 30.6 |  | 1995 | 19.5 |  |
| 1887 | 13.1 |  | 1943 | 16.3 |  | 1996 | 9 | m |
| 1888 | 6.8 |  | 1944 | 9.6 | m | 1997 | 21 |  |
| 1889 | 6.3 | m | 1945 | 33.2 |  | 1998 | 64 |  |
| 1890 | 7.1 |  | 1946 | 92.6 |  | 1999 | 93 |  |
| 1891 | 35.6 |  | 1947 | 151.6 | M | 2000 | 119 | M |
| 1892 | 73 |  | 1948 | 136.3 |  | 2001 | 111 |  |
| 1893 | 85.1 |  | 1949 | 134.7 |  | 2002 | 104 |  |
| 1894 | 78 |  | 1950 | 83.9 |  | 2003 | 65 |  |


| 1895 | 64 |  | 1951 | 69.4 |  | 2004 | 41 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1896 | 41.8 |  | 1952 | 31.5 |  | 2005 | 29 |  |
| 1897 | 26.2 |  | 1953 | 13.9 |  | 2006 | 15 |  |
| 1898 | 26.7 |  | 1954 | 4.4 | m | 2007 | 7.5 |  |
| 1899 | 12.1 |  | 1955 | 38 |  | 2008 | 2.9 | m |
| 1900 | 9.5 |  | 1956 | 141.7 |  | 2009 | 3.1 |  |
| 1901 | 2.7 | m | 1957 | 190.2 | $M$ | 2010 | 16 |  |
| 1902 | 5 |  | 1958 | 184.8 |  | 2011 | 56 |  |
| 1903 | 24.4 |  | 1959 | 159 |  | 2012 | 58 |  |
| 1904 | 42 |  | 1960 | 112.3 |  | 2013 | 72 |  |
| 1905 | 63.5 | $M$ | 1961 | 53.9 |  | 2014 | 81.9 | $M$ |
| 1906 | 53.8 |  | 1962 | 37.6 |  | 2015 | 114 |  |

## Year of solar maximum

## Year of solar minimum

