Conversion of NOAA Atmospheric CH$_4$ Mole Fractions to a Gravimetrically-Prepared Standard Scale

E.J. Dlugokencky1, R.C. Myers2, P.M. Lang1, K.A. Masarie1, A.M. Crotwell1,3, K.W. Thoning1, B.D. Hall1, J.W. Elkins1, and L.P. Steele4

1NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-6228, Fax 303-497-6290, E-mail: Ed.Dlugokencky@noaa.gov

2NOAA National Institute of Standards and Technology, Gaithersburg, MD 20899

3Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309

4Division of Atmospheric Research, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia

Sixteen gas mixtures were prepared using a gravimetric technique to define a CH$_4$ standard gas scale covering the nominal range 300 to 2600 nmol mol$^{-1}$. This scale, which has been accepted by the community of experts within the Global Atmosphere Watch program as the WMO X-CH$_4$ scale, is designed to cover a range of measurements for methane in air extracted from glacial ice through contemporary background conditions. All standards were prepared in passivated, 5.9-L high-pressure aluminum cylinders. Methane dry-air mole fractions were determined by gas chromatography with flame ionization detection (FID), where the repeatability of the measurement is typically better than 0.1% (≤ 1.5 nmol mol$^{-1}$) for ambient CH$_4$ levels. Once a correction was made for 5 nmol mol$^{-1}$ CH$_4$ in the diluent gas, the scale was used to verify the linearity of our FID over the nominal range 300 to 2600 nmol mol$^{-1}$. The gravimetrically prepared standards were analyzed against the existing CMDL CH$_4$ scale (Figure 1, top panel), and they give CH$_4$ mole fractions that are a factor of (1.0124 ± 0.0007) greater than the old NOAA scale. In the bottom panel of Figure 1, residuals are plotted from a straight line fitted to the measurements, where different symbols represent different preparation techniques. All CMDL measurements of atmospheric CH$_4$ will be adjusted to this new scale.

![Figure 1](attachment:image.png)

Figure 1. (Top) Plot of prepared gravimetric value for each standard versus the CH$_4$ mole fraction determined relative to the CMDL scale. The intercept is -4.8 ± 1.1 nmol mol$^{-1}$ and the slope is 1.0124 \pm 0.0007. (Bottom) Residuals of the fit in (a) plotted with different symbols for each preparation method: squares are tube expansion method; circles are tube flush method; and triangles are direct dilution method.