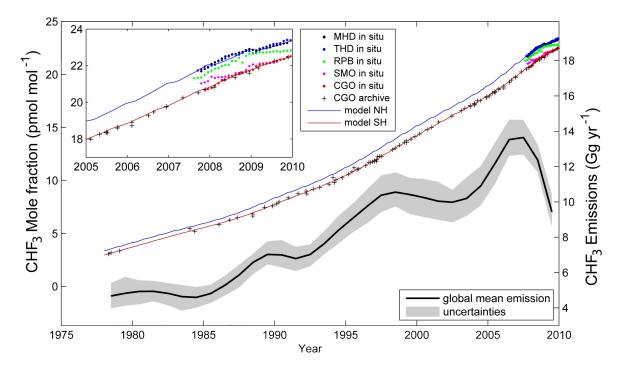
CHF₃ (HFC-23) Emission Trend Response to CHClF₂ (HCFC-22) Production and Recent Emission Abatement Measures

B.R. Miller¹, M. Rigby², P. Krummel³, P. Steele³, L. Porter⁴, M. Leist³, P. Fraser³, A. McCulloch⁵, C. Harth⁶, P. Salameh⁶, J. Mühle⁶, R. Weiss⁶, R. Prinn², S. ODoherty⁵, B. Greally⁵ and P. Simmonds⁵

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; 303-497-6624, E-mail: ben.r.miller@noaa.gov

²Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02138


³Centre for Australian Weather and Climate Research, Aspendale, Victoria, Australia

⁴Australian Government Bureau of Meteorology, Melbourne, Victoria, Australia

⁵School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

⁶Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093

 CHF_3 (HFC-23) is an inevitable by-product of $CHClF_2$ (HCFC-22) production for use in air conditioning/refrigeration and as feedstock in fluoropolymer manufacture. CHF_3 has limited use in small emissive and non-emissive markets and thus historically this 'waste' gas was simply vented to the atmosphere following production at $CHClF_2$ plants. Concern over its high Global Warming Potential of 14,800 (100-year horizon) has lead to international efforts to curb its emissions. We present emission and production estimates for both gases based on observations of lower-tropospheric CHF_3 and $CHClF_2$ mole fractions at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote *in situ* Gas Chromatography/Mass Selective Detector instruments and in archived air samples. We quantitatively attribute recent changes in CHF_3 production to various sources.

Figure 1. AGAGE *in situ* atmospheric observations (2007-2009) of CHF_3 at global monitoring sites and in the Cape Grim air archive (1978-2009) show a historically accelerating growth with a marked deceleration since 2006 (left axis). Inversion using the AGAGE 2D 12-box model yields CHF_3 emission estimates (right axis). The sharp increase in CHF_3 emissions during 2004-2006 results from a dramatic increase in $CHCIF_2$ production in Article 5 countries (predominantly China and India). The sharp decrease in CHF_3 emissions since 2006 reflects a decrease in global $CHCIF_2$ production, destruction (incineration) of >6 Gg CHF_3 yr⁻¹ by Article 5 countries (China, India, South Korea, Argentina and Mexico) participation in the United Nations Framework Convention on Climate Change's Clean Development Mechanism and emission reduction efforts by non-Article 5 countries.