Earth System Research Laboratory Global Monitoring Annual Conference

Integrated Climate Observing and Monitoring: A New Paradigm

Thomas R. Karl

Interim Director, NOAA Climate Service Director, NOAA National Climatic Data Center, Asheville, North Carolina

May 19, 2010 -- Boulder, Colorado

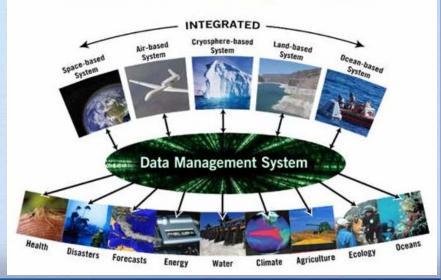
Traditional and Historic NOAA Practice

- Observing system justified on the basis of a requirement, but focused on a single observing method, e.g.,
 - Satellite platform
 - Geostationary
 - Low earth orbiting
 - In situ observations
 - Mobile
 - Fixed
 - Monitoring
 - Entirely separate activity

New Paradigm for NOAA

- Consider multiple observing systems for specific Essential Climate Variables (ECVs)
 - For example Sea Level:
 - Tide gauges
 - Altimetry
 - Sub-surface ocean temperature
 - Glacier
 - Ice sheets

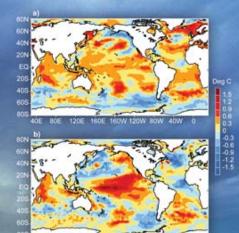
Characteristics of "Climate" Observing Systems


- Science-based
- Operations and maintenance are a high priority
- Measure 1 or more variables using a single approach
- Calibration is a high priority

Characteristics of Integrated "Climate" Observing System

- All of the previous slide
- Measure a single or multiple variables using multiple approaches
 - Independent observing methods for the same variable

Observing Systems Global Earth Observation System of Systems


Characteristics of "End to End" Climate Monitoring

- Transformation of observations into a time series with known uncertainties related to time-dependent and random errors
 - Requires peer-reviewed, science based processing
 - Transparency and reproducibility
 - Expert analysis and interpretation
 - Open reviews
 - Public availability of all steps (barring classified information)
- Independent science teams to transform time series into homogeneous climate time series with known structural errors
- Communications unmet need

BAMS State of the Climate in 2009: A mean to assess current paradigm

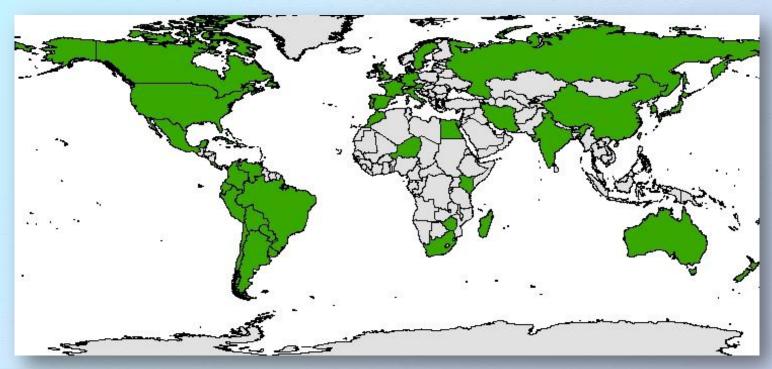
STATE OF THE CLIMATE IN 2009

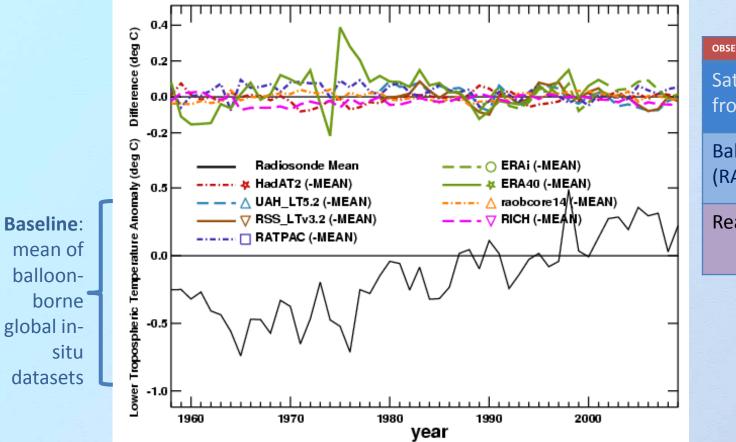
D.S.Arndt, M.O. Baringer and M.R. Johnson, Eds. Associate Eds. L.V. Alexander, H.J. Diamond, R.L. Fogt, J.M. Levy, J. Richter-Menge, P.W. Thorne, L.A. Vincent, A.B. Watkins and K.M. Willett

40E 80E 120E 160E 160W 120W 80W 40W 0 a) Yearly mean sea surface temperature anomalies (SSTA) in 2009 and (b

(a) Yearly mean sees surface temperature anomalies (35TA) in 2009 and (b) SSTA differences between 2009 and 2008. Anomalies are defined as departures from the 1971-2000 climatology. Refer to Chapter 3, Figure 3.1 for a more detailed description.

Special Supplement to the Bulletin of the American Meteorological Society Vol. 91, No. 7, July 2010

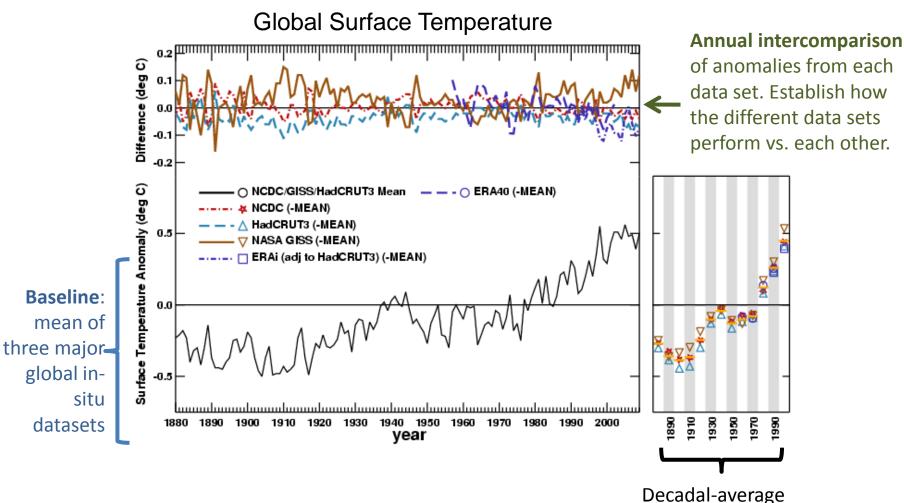



Integrated Climate Observing and Monitoring: A New Paradigm

BAMS State of the Climate Report

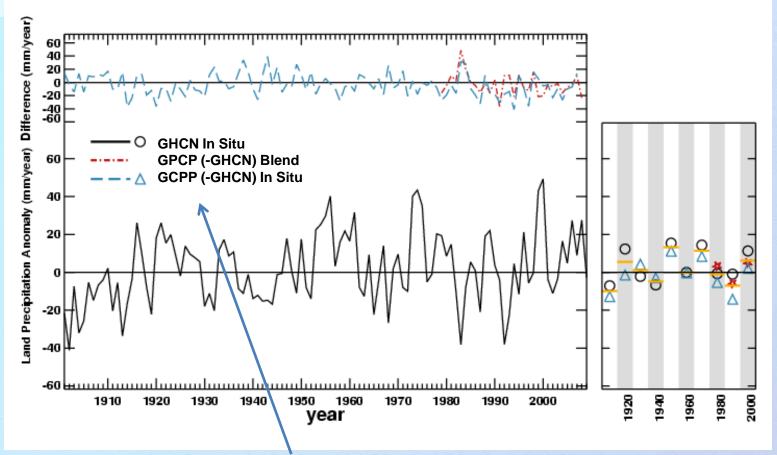
- 302 authors from 168 institutions in 47 nations
- Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, China, Colombia, Comoros, Costa Rica, Cuba, Denmark, Ecuador, Egypt, France, Germany, India, Iran, Italy, Jamaica, Japan, Kenya, Madagascar, Mauritius, Mexico, Morocco, New Zealand, Niger, Paraguay, Peru, Portugal, Russia, Seychelles, Solomon Islands, South Africa, South Korea, Spain, Sweden, Taiwan, United Kingdom, United States, Uruguay, Venezuela, Zimbabwe

Essential Climate Variable: Tropospheric Temperature


OBSERVING

Satellite-borne (MSU, from multiple sources)

Balloon-borne (RATPAC)


Reanalysis Data

Independent Science Teams Analyzing the Same Essential Climate Variable

anomalies of these datasets

Essential Climate Variable: Global Precipitation

Precipitation data sets contain varying composition of satellite-derived and in-situ observed precipitation.

State of the Climate – Essential Climate Variables

Domain	Essential Climate Variable	2007	2008	2009	Domain	Essential Climate Variable	2007	2008	2009
Atmospheric Surface	Air temperature	Y	Y	Y	Ocean surface	Sea surface temperature	Y	Y	Y
Atmospheric Surface	•	Ŷ	Ŷ	Ŷ	Ocean surface	Sea surface salinity	Y	Y	Y
Atmospheric Surface		N	Ŷ	Ŷ	Ocean surface	Sea level	Y	Y	Y
•	Surface radiation budget	N	Ν	Ν	Ocean surface	Sea state	Ν	Ν	N
	Wind speed and direction	Р	Р	Р	Ocean surface	Sea ice	Y	Y	Y
Atmospheric Surface		N	Ν	Ν	Ocean surface	Current	Y	Y	Y
	·				Ocean surface	Ocean color (for biological activity)	Y	Y	Y
	Earth radiation budget (including solar				Ocean surface	Carbon dioxide partial pressure	Р	Р	Р
Atmos Upper Air	irradiance)	Р	Y	Y					
	Upper-air temperature (including MSU				Ocean subsurface	Temperature	Y	Y	Y
Atmos Upper Air	radiances)	Y	Y	Y	Ocean subsurface	Salinity	N	Ν	Ν
Atmos Upper Air	Wind speed and direction	N	Ν	Ν	Ocean subsurface	Current	Р	Р	Р
Atmos Upper Air	Water vapor	N	Y	Y	Ocean subsurface	Nutrients	N	N	N
Atmos Upper Air	Cloud properties	Р	Y	Y	Ocean subsurface	Carbon	Y	Р	Р
					Ocean subsurface	Ocean tracers	Ν	Ν	N
Atmos Composition	Carbon dioxide	Y	Y	Y	Ocean subsurface	Phytoplankton	Ν	Ν	N
Atmos Composition	Methane	Y	Y	Y					
Atmos Composition	Ozone	Y	Y	Y	Terestrial	Soil moisture and wetness	Р	Р	Р
Atmos Composition	[Other long-lived greenhouse gases]:	N	N	Р	Terestrial	Surface ground temperature	Ν	Ν	N
Atmos Composition		Y	Ŷ	Ŷ	Terestrial	Subsurface temperature and moisture	Ν	Ν	N
•	Chlorofluorocarbons	Ý	Ŷ	Ŷ	Terestrial	Snow and ice cover	Y	Y	Y
•	Hydrochlorofluorocarbons	Y	Y	Y	Terrestrial	Permafrost & Seasonally Frozen Ground	Р	Р	Р
•	Hydrofluorocarbons	Y	Y	Y	Terestrial	Glaciers and ice sheets	Y	Р	Р
•	Sulphur hexaflurorides	Y	Y	Y					
Atmos Composition	•	N	Ν	Ν	Add'l Terrestrial	River discharge		Р	Р
Atmos Composition		Y	Y	y	Add'l Terrestrial	Water use		N	Ν
					Add'l Terrestrial	Ground water		Ν	Ν
					Add'l Terrestrial	Lake levels		Ν	Р
					Add'l Terrestrial	Albedo		Ν	Ν
					Add'l Terrestrial	Land cover (including vegetation type)		Р	N

N

Ρ

Fraction of absorbed photosynthetically

Add'l Terrestrial active radiation (fAPAR)

Leaf area index (LAI)

Add'l Terrestrial

Add'l Terrestrial Biomass

Add'l Terrestrial Fire disturbance

Essential Climate Variables (ECVs): Atmospheric Surface

ECV	2009	Variable	Source		
Air temperature	Y	Sfc Temp	GHCN	ERSST	
		Sfc Temp	HadCrut		
		Sfc Temp	GISS	HadCRUT3	NCDC
Precipitation	Y	Precipitation	RSS	GHCN	
		Precip Anomalies	GHCN	GPCC	GPCP
		Precip (Ocean			
		<60lat))	RSS	GPCP	CMAP
		Precip (Ocean			
		<60lat))	RSS		
Air pressure	Y	MSLP	Had	NCEP/NCAR	
Surface radiation budget	N				
Wind speed and directio	n P	Wind Speed	AMSR-E		
		Wind Speed	AMSR-E	SSM/I	
		Wind Speed	AMSR-E	SSM/I	
KEY Satellite	-based	In-situ	Ground-Ba Remote Sen	Rean	alysis

Essential Climate Variables (ECVs): Atmospheric Upper-Air

ECV	'09	Variable	Source					
Earth rad'n budget	Y	TOA ERB	CERES					
Upper-air								
temperature	Y	Lower Strat	RSS-MSU					
		Lower Strat	HadAt2	RATPAC	RICH	UAH	RSS	ERAi
		Lower Strat	ERAi	ERA-40				
		Lower Trop	ERAi					
		Lower Trop	HadAt2	RATPAC	RICH	UAH	RSS	ERAi
		Lower Trop	ERAi	ERA-40				
Wind speed &								
direction	N							
Water vapor	Y	Total Column WV	SSM/I	GPS		_		
		Total Column WV	GPS	SSM/I	COSMIC			
		Total Column WV	SSM/I	AMSR-E				
Cloud properties	Y	Cloudiness	PATMOS-x					
		Cloud anomaly	PATMOS-x					
		Cloud anomaly	ISCCP	MODIS	MISR	PATMOS->	Sfc Obs	

KEYSatellite-basedIn-situGround-Based Remote SensingReanalysis

Essential Climate Variables (ECVs): Atmospheric Composition

ECV	'09	Variable	Source		
Carbon dioxide		monthly CO ₂	ESRL observatories		
Methane	Y				
Ozone	Y	Ozone	GOME-2		
		Ozone	GOME-1	GOME-2	
		Ozone	GOME-	spectrometer	
		Upr Strat O ₃	lidar	micro spect.	SBUV SAGE HALOE
Other long-lived GHGs	Р				
Nitrous oxide	Y		ESRL observatories		
Chlorofluorocarbons	Y		ESRL observatories		
<u>Hydrochlorofluorocarbons</u>	Y		ESRL observatories		
Hydrofluorocarbons	Y		ESRL observatories		
Sulphur hexaflurorides	Y				
Perfluorocarbons	Ν				
Aerosol properties.	у				

KEYSatellite-basedIn-situGround-Based
Remote SensingReanalysis

Essential Climate Variables (ECVs): Ocean Surface

ECV	' 09	Variable	Source	
Sea surface temperature	Y	SST	OISST	
		SST	OISST	
		SST	ERSST v3b	
Sea surface salinity	Y	Salinity	Argo	
Sea level	Y	SSH	SSALto / Duacs	UHawaii gauge
		Global MSL	TOPEX/Poseidion	Jason
		Global MSL	Argo	GRACE
		Sea level Variability	Tide gauges	
Sea state	N			
Sea ice	Y	Sea Ice Extent	NSIDC	
Current	Y	Zonal anomalies	OSCAR	
		Zonal anomalies	OSCAR	
Ocean color	Y	Chlorophyll	SeaWIFS	
			SeaWIFS	
CO2 partial pressure	P	Air-sea flux	Park et al	

Essential Climate Variables (ECVs): Ocean Sub-Surface

ECV	'09	Variable	Source		
Temperature	Y	Upper OHCA	Hadley	NODC	PMEL
		Upper OHCA	various XBT		
Salinity	Ν				
Current	P	MOC Components	MOCHA	UK-NERC	
Nutrients	N				
Carbon	P	dissolved inorganic CO ₂	CLIVAR		
Ocean tracers	N				
Phytoplankton	Ν				

KEY	Satellite-based	In-situ	Ground-Based Remote Sensing	Reanalysis
-----	-----------------	---------	--------------------------------	------------

Essential Climate Variables (ECVs): Terrestrial

ECV	ECV		'09	Variable	Source
Soil moisture and wetness			Р		
Surface ground temperature					
Subsurface temperature and moisture					
Snow and ice cove	er		Y	Snow Cover Extent	GOES
Permafrost			Р		
Glaciers and ice s	heets		Р	Glacier mass	observations
River discharge			Р	River Discharge	Gauge data
Water use			Ν		
Ground water					
Lake levels			Y	Lake Levels	JASON
Albedo			Ν		
Land cover (inclue	ding veg. type)		Ν		
Fraction of absorb	ped photosynthetically a	active			
<u>rad'n</u>			Y	fapar	SeaWIFS
Leaf area index (LAI)					
Biomass				Biomass Burning	GEMS/MACC
Fire disturbance			Р	Biomass Burning (p	oroxy) GEMS/MACC
KEY	Satellite-based	l	n-situ	Ground-Base Remote Sensi	Reanalysis

Conclusions

- NOAA would do well to use a new paradigm in its strategy for observing and monitoring initiatives
- Integrated "Climate" Observing
 - Multiple platform long-term monitoring requests
 - End-to-end observing and monitoring
 - Communication

