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 The need for air-sea gas transfer velocity (example for global CO2)

 Wind speed parameterizations of k

 Direct observations of the flux (GasEx and more)

 COARE micro-meteorological k parameterization

 Addition of other gas flux observations into COARE

 Investigations of solubility and bubble effects

 Operational application of the COARE gas transfer parameterization



The need for k

Takahashi, et al. (2009), DSR II, 56, pp 554-577
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k

ΔpCO2    * k =       Flux

k = ~ 0.26 U2 Wanninkhof (1992)



Motion-Corrected Eddy-Covariance Turbulence Observations  
(momentum, sensible heat, and latent heat fluxes since 1990)
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Physical flux:   <w’x’>   =   CxU(Xr – Xs )   =   CxUΔX
Gas flux:           <w’x’>   =   kxαxΔX      α is solubility
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GasEx-98 cruise in the North Atlantic (~June 1998)

F = k ΔpCO2
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U3

U2

*Dots are field obs

Quadratic, Cubic, relationships with U
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k varies only with U ?
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Development of a micro-meteorological 
parameterization for gas transfer velocity, k

Xw = concentration in the water
Xa = concentration in air

Express k in terms of water-side and 
air-side RESISTANCES, R

R will express transfer processes

Gases reactive in water 
Chemical enhancement factor β
For large β, k becomes a deposition velocity
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Expressions for resistances
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Bubbles enhance transfer on 
ocean side

Air-side resistance
Water-side resistance

A is adjustable constant

Ф is a buoyancy function

Bubble velocity (Woolf)

B is adjustable constant

Wb is whitecap fraction
4.3610*8.3 UWb

−=

Soloviev & Schlussel ‘94
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Applied COARE gas parameterization
A and B adjustments

With bubbles (kb) Without bubbles (kb)
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GasEx-01 cruise in the Equatorial Pacific (~Feb 2001)

To match, A x3 B x2
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Adding more gases – DMS (CLAW)

Huebert and Blomquist - UHawaii

Increase data set, develop range of solubilities, elucidate the physics, etc

Atmospheric Pressure Ionization Mass Spectrometry
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Highlights the need to include solubility in k parameterization
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Temperature effects of bubble-solubility normalization

DMS

CO2

How to discern bubble vs. interfacial transfer for field observations of the flux?
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GasEx-08 cruise in the Southern Ocean (~March 2008)
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For a given wind speed, k drops for older waves (partitioning/breaking)

Wave state effects
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Adding more gases – O3 (MBL and sfc chemistry)

Helmig – INSTAAR, University of Colorado
O3-NO-chemiluminescence
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Satellite-derived CO2 Transfer Velocities using COARE

Monthly-mean k for CO2
COARE with satellite 
inputs of U10, Tair, Tsea, Qair

COARE-modeled transfer 
velocities using satellite 
observations (A=1.31, B=2.57)



Contrast to Stress/Heat Coefficients: Large 
Uncertainties Remain for Gas Transfer

Gas Transfer Sensitivity to:
*Solubility
*Wave breaking
*Bubbles
*Tangential vs Pressure 

(wave) stress
*Surfactants
*Temperature
*Complex chemistry
*Biology
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Summary
•Progress on observational capabilities for air-sea gas flux observations

•Instrumentation
•Suite of gases

•Progress on development of comprehensive gas transfer algorithm
•Gas transfer velocity determined at forcing scales
•Development needed for bubbles/whitecap range

•Significant gaps exist in understanding gas exchange at high winds
•Bubbles
•Wave state

•Understanding of surface and boundary layer biogeochemistry is needed
•Ozone deposition
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