
Global Trends in Atmospheric SF₆

B. Hall¹, G. Dutton², D. Mondeel², D. Nance², M. Rigby³ and J.W. Elkins¹

¹NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-7011, E-mail: Bradley.Hall@noaa.gov

²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 ³Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02138

Sulfur hexafluoride (SF_6) is a potent greenhouse gas and useful atmospheric tracer. NOAA SF_6 measurements from two Earth System Research Laboratory/Global Monitoring Division programs (flask and *in situ*) were combined to produce global and hemispheric mean records. There were then were used to examine changes in the growth rate of SF_6 and corresponding SF_6 emissions. Global emissions and mixing ratios from 2000-2008 are consistent with recently published work. More recent observations show a 10% decline in SF_6 emissions in 2008-2009, corresponding with a decrease in world economic output. This decline was short-lived, as the global SF_6 growth rate has recently increased to near its 2007-2008 maximum value of 0.29 ppt yr⁻¹. Interannual variability of the SF_6 growth is examined, along with implications for changing emissions.

Figure 1. Growth rate of SF₆ calculated from global and Northern Hemispheric mean SF₆ mixing ratios.