Radiative Forcing Efficiency of the Fourmile Canyon Fire Smoke Plume--A Near-Perfect Ad Hoc Experiment

John A. Augustine, Robert S. Stone, and Ellsworth G. Dutton
Earth System Research Laboratory
Global Monitoring Division, Boulder, CO

Plume from the perspective of NASA MODIS

6 Sept. 2010, 12:15 MDT, ~ 2 hours after the fire started

Good weather conditions for a wildfire

Our focus was the Radiative Forcing Efficiency (RFE) of the smoke aerosol

RFE = Δ Total Net Sfc. Rad./unit AOD₅₀₀ RFE_{sw} (direct effect of aerosol) RFE_{lw} (enhanced emission by the smoke layer)

Measurements Needed:

- Net SW
- Net LW
- Surface albedo
- AOD (500nm)

From *JGR*, Stone et al. 2008

RFE_{sw} also depends strongly on the solar zenith angle (SZA)

Ideal measurement set for RFE

- Two state-of-the-art surface radiation budget stations under smoke plume – SW, LW, and Albedo
- AOD measurements at three sites large range of AOD sampled
- Cloud-free skies all day uninhibited AOD calculations, large range of solar zenith angles
- Many ancillary measurements Optical properties of aerosol, TSI, GPS integrated water vapor, wind, temp., RH
- Very few similar published studies have such a complete set of measurements
- Others have used model calculations, MODIS AOD, distant albedo measurements, only downwelling radiation, estimate upwelling SW using albedo, etc.

2°-5°C reduction under plume

Measured optical properties at the DSRC

(courtesy of Betsy Andrews and John Ogren)

Single scattering albedo
Unfortunately we didn't
have an absorption
instrument on in the lab
before mid-DOY250.
For DOY 250.5-251.5, SSA
ranges between 0.65-0.91,
with the lower values
occurring when scattering
was also low.

Asymmetry parameter ~0.52 (dry, sub-10 um) Range 0.52-0.59 for date range 250.5-251.5

Surface net radiation vs. AOD yields RFE

Large range of solar zenith angles
Combined TMTN and BAO data; albedo=0.15 at both sites

Radiative Forcing Efficiency (RFE $_x$) as a function of solar zenith angle, valid for sfc. Albedo of 0.15

Integrated effect

Because RFE varies nonlinearly with solar zenith angle, a daily integral is more useful for assessing the climatic impact of smoke aerosols

Daily Integrated results for the Fourmile Canyon fire:

 RFE_{sw} : -61.5 Wm⁻²/AOD₅₀₀

 RFE_{lw} : +10.0 Wm⁻²/AOD₅₀₀

RFE_{total}: -51.5 Wm⁻²/AOD₅₀₀

This implies that the surface radiative forcing of a widely dispersed smoke aerosol averaging an AOD of only 0.1 would be about -5 Wm⁻²

Conclusions

- Maximum cooling due to shortwave attenuation is about 20 times greater than warming by enhanced thermal emission by the smoke layer
- Our computed Radiative Forcing Efficiency of the Fourmile fire plume of -51.5 Wm⁻²/AOD₅₀₀ is valid for surface albedo of 0.15
- Cooling under smoke plume during the day was as much as 5°C
- Studies have shown that pyrocumulus from wildfires injects smoke aerosol into the stratosphere where it can reside for months
- •The impact of widely dispersed smoke (0.1 AOD) can be significant; and equivalent to doubling CO_2 , when in effect
- Parameterizations can be developed by extending these results to other aerosol types, sfc. albedo, RH, etc. with modeling experiments

GPS water vapor data

(Courtesy of Seth Gutman)

MODIS AOD global annual average for 2007

Fig. 2.22. Global map of mean AOD values at 550 nm from the MODIS Terra satellite.