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Calculating fossil fuel-derived CO, using A4C




Calculating fossil fuel-derived CO, using A4C
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Components of uncertainty:
- measurement uncertainty in A*C
- uncertainty in non-fossil influences on A*C ([3)

- uncertainty in background A*C
for application of interest



Target precision:

Achieving +25% in emissions requires *2-3%o in 0A
at urban and continental scales

Emissions Boundary Layer 1 km
City (Mton CO,yr")  0Cq (ppm)  OA« (%o)
Los Angeles  73.2 4.3 -12
Chicago 79.1 5.4 -15
Houston 101.8 6.4 -17
Indianapolis 20.1 2.4 -6
Tokyo 64 5.6 -15
Seoul 43 6.3 -17
Beijing 74 9.4 -25
Shanghai 112 15 -41

Pacala et al. 2010
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Measurement uncertainty

e Recent efforts have achieved +1.7 %o with AMS,

equivalent to +0.6 ppm in 8Cs, using air standards
(Graven et al. 2007; Turnbull et al. 2007)

Other uncertainties must also be reduced to roughly 2 %o

* Non-fossil influences
Turnbull et al., JGR, 2009; Graven and Gruber, ACPD, 2011

e Background A4C

What is the range in A4C for air entering North America?
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Average NH A'C gradients, 2002-07

Apparent positive AC

3l | | | - gradient with altitude in
tropics and midlatitudes,
0 though inter-laboratory
offsets possible
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Latitude (°N) and altitudes is not known

NWR data (2003-06) from J. Turnbull
and JFJ data (2002-06) from I. Levin



Year-to-year
variability

Weak NH gradients in 2003
Range in A¥™C: +1.8 %o

Strong NH gradients in 2005
Range in A¥™C: £2.6 %o

Assuming constant meridional
gradients could introduce biases
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Seasonal variation
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Seasonal maximum in fall

Amplitude increases with latitude

Smallest range in Sept-Oct, at the
seasonal maximum
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Variability in seasonal cycles

Amplitude high at PTB, low at LJO
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Variability in seasonal cycles

Amplitude high at PTB, low at LJO Amplitude low at PTB, high at LJO
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What’s driving the patterns and varlablllty? Can |t
be simulated with models? ™
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Atmospheric transport, including: sl

Vertical transport from the stratosphere = |
Vertical transport from the boundary layer
Meridional transport

Biospheric and nuclear sources
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What'’s driving the patterns and variability? Can it
be simulated with models?

Air-sea fluxes, including:

Evolving oceanic *C exchange
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Variation in background A*4C can also provide a
measure of global emissions, if non-fossil influences
and inter-hemispheric transport are understood

Present uncertainty: Trend North —South
OAC/ot Gradient 0A*C
Total non-fossil-CO» 3.5 %olyr 3.0 %o

This represents a potential precision of about £25%
in global fossil fuel emissions,

but it could be improved
Levin et al. 2010



Development of A*C-based d6C, observations

Apy — A

meas

oy 2.7%o0 ppm’ vp
Accomplishments Challenges
* [mprovements in * Indentifying
measurement appropriate Ay,
precision e Observing and
e Qualitative understanding
understanding of variability and trends

contributions to f3 in Ay, and 3
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