Patterns and Variability in Δ^{14} C of CO₂ in Northern Hemisphere Background Air

Heather Graven

Scripps Institution of Oceanography (hgraven@ucsd.edu)

Tom Guilderson, Lawrence Livermore National Laboratory and Ralph Keeling, Scripps Institution of Oceanography

Calculating fossil fuel-derived ${\rm CO_2}$ using $\Delta^{14}{\rm C}$

Calculating fossil fuel-derived ${\rm CO_2}$ using $\Delta^{14}{\rm C}$

$$\delta C_{ff} = C_{meas} \frac{\Delta_{bg} - \Delta_{meas}}{\Delta_{bg} + 1000\%} + \beta$$

$$\approx \frac{\Delta_{bg} - \Delta_{meas}}{2.7\% \text{ ppm}^{-1}} + \beta$$

Components of uncertainty:

- measurement uncertainty in $\Delta^{14}{
 m C}$
- uncertainty in non-fossil influences on $\Delta^{14}C$ (β)
- uncertainty in background $\Delta^{14}C$ for application of interest

Target precision:

Achieving ±25% in emissions requires ±2-3‰ in $\delta\Delta_{\rm ff}$ at urban and continental scales

	Emissions	Boundary Layer 1 km		
City	(Mton CO ₂ yr ⁻¹)	$\delta C_{\rm ff}$ (ppm)	$\delta\Delta_{\rm ff}$ (‰)	
Los Angeles	73.2	4.3	-12	
Chicago	79.1	5.4	-15	
Houston	101.8	6.4	-17	
Indianapolis	20.1	2.4	-6	
Tokyo	64	5.6	-15	
Seoul	43	6.3	-17	
Beijing	74	9.4	-25	
Shanghai	112	15	-41	

Pacala et al. 2010 Hsueh et al. 2007

Measurement uncertainty

• Recent efforts have achieved ± 1.7 ‰ with AMS, equivalent to ± 0.6 ppm in $\delta C_{\rm ff}$, using air standards (Graven et al. 2007; Turnbull et al. 2007)

Other uncertainties must also be reduced to roughly 2 ‰

Non-fossil influences

Turnbull et al., JGR, 2009; Graven and Gruber, ACPD, 2011

• Background Δ^{14} C

What is the range in Δ^{14} C for air entering North America?

Δ^{14} C in CO $_2$ at Northern Hemisphere measurement sites from Scripps

Mauna Loa: 3400 m ASL Other sites at sea level

Average NH Δ^{14} C gradients, 2002-07

Apparent positive Δ^{14} C gradient with altitude in tropics and midlatitudes, though inter-laboratory offsets possible

La Jolla shows lowest Δ^{14} C reflecting large-scale gradient, not local influences

Variation across midlatitudes and altitudes is not known

NWR data (2003-06) from J. Turnbull and JFJ data (2002-06) from I. Levin

Year-to-year variability

Weak NH gradients in 2003 Range in Δ^{14} C: ±1.8 ‰

Strong NH gradients in 2005 Range in Δ^{14} C: ±2.6 ‰

Assuming constant meridional gradients could introduce biases

Seasonal variation

Seasonal maximum in fall

Amplitude increases with latitude

Smallest range in Sept-Oct, at the seasonal maximum

Variability in seasonal cycles

Amplitude high at PTB, low at LJO

Variability in seasonal cycles

Amplitude high at PTB, low at LJO

Amplitude low at PTB, high at LJO

What's driving the patterns and variability? Can it

be simulated with models?

Atmospheric transport, including:

Vertical transport from the stratosphere Vertical transport from the boundary layer Meridional transport

Biospheric and nuclear sources

What's driving the patterns and variability? Can it be simulated with models?

Air-sea fluxes, including: Evolving oceanic ¹⁴C exchange

Variable outgassing in the N. Pacific

Hamme and Keeling, 2008; Graven et al. submitted

Graven et al. in prep

Variation in background Δ^{14} C can also provide a measure of global emissions, if non-fossil influences and inter-hemispheric transport are understood

Present uncertainty:	Trend $\partial \Delta^{14}$ C $/\partial$ t	North – South Gradient $\delta\Delta^{14}$ C	
Total non-fossil-CO ₂	3.5 ‰/yr	3.0 ‰	

This represents a potential precision of about ±25% in global fossil fuel emissions, but it could be improved

Levin et al. 2010

Development of Δ^{14} C-based δ C_{ff} observations

$$\delta C_{ff} \approx \frac{\Delta_{bg} - \Delta_{meas}}{2.7\% \text{ ppm}^{-1}} + \beta$$

Accomplishments

- Improvements in measurement precision
- Qualitative understanding of contributions to β

Challenges

- Indentifying appropriate $\Delta_{
 m bg}$
- Observing and understanding variability and trends in Δ_{bg} and β

Supported by DOE, NSF, NOAA, NASA, LLNL, BP and UCOP