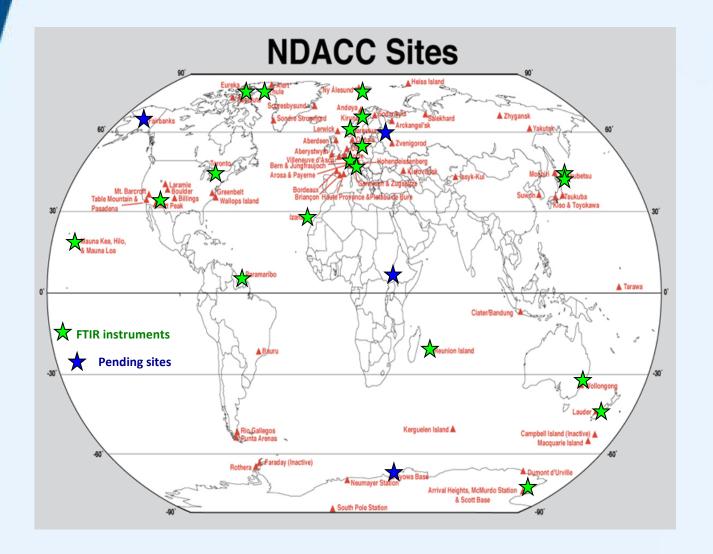




# NDACC FTS Trace Gas Analyses and the Revitalized MLO FTS System

J. Hannigan, M. T. Coffey, R. B. Batchelor

Dedicated to Curtis P. Rinsland






### Outline



- Changing NDACC/IRWG Network
  - Data homogenization process
  - Data products
- MLO & Boulder Retrievals
- MLO FTS Observation Program
  - Data record
  - Status and future plans





Member sites: 19

Candidate or Affiliated Sites (4 +):

Poker Flat, AK, Addis Ababa, Ethiopia, Syowa Station Ant. (Japan)

St. Petersburg, Russia

GMD, Boulder, CO 17-18 May 2011

#### IRWG Instrumentation / Retrievals / Data Products

#### NCAR

#### Solar viewing, high resolution, broad band

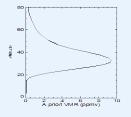
- ➤ High signal to noise
- Narrow field of view
- > Fully resolve any atmospheric line to Doppler width
- ➤ Observe 20+ species
  - o Greenhouse or minor species (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, O<sub>3</sub>, CO, H<sub>2</sub>O)
  - Trace species (HCN, OCS, NO, NO<sub>2</sub>, H<sub>2</sub>CO, ClONO<sub>2</sub>, HNO<sub>3</sub>, HF, HCl, HCFC-22, CFC-11, CFC-12, HCOOH, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>6</sub>...)
  - o Isotopes of several of these species (HDO, H<sub>2</sub><sup>18</sup>O, H<sub>2</sub><sup>17</sup>O, <sup>13</sup>CO<sub>2</sub>, CH<sub>3</sub>D)
- Required: HCl, HF, O<sub>3</sub>, HNO<sub>3</sub>, ClONO<sub>2</sub>, CO, CH<sub>4</sub>, N<sub>2</sub>O, HCN, C<sub>2</sub>H<sub>6</sub>

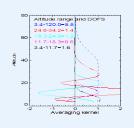
#### Improved homogenization across network

- ➤ Site a priori from WACCM global CCM model 1980-2020 mean for each site/gas (Eyring et al., 2006)
- Consistent spectral windows, retrieval grids, a priori line list (HITRAN) and other parameters
- > Calibration cell spectral results feed back into retrievals
- Optimal Estimation retrieval method

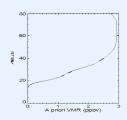
#### IRWG Instrumentation / Retrievals / Data Products

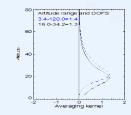
#### NCAR


#### Data Products


- > Total vertical column
- > Partial column / mixing ratio over narrower altitude ranges
  - > Number of ranges and altitude width dependent on site & gas
  - Defined by degrees of freedom for signal (DOFS) of the retrieval
  - $\triangleright$  DOFS range: ~1 eg. HCN to ~6 eg. O<sub>3</sub>
- Data available at <u>www.ndacc.org</u>
  - Total columns in Gains & Hipskind format
  - Mixing ratio profiles + much ancillary data available in HDF format
  - Many gases from most sites available (but not all...)

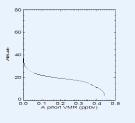
#### **Example Sensitivities**

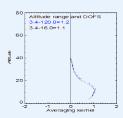

#### **Mixing Ratio Averaging Kernels:**



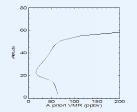


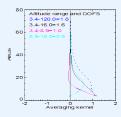




- ✓ From OE retrieval
- ✓ Summed from retrieval layers to DOFS~1
- ✓ Total column





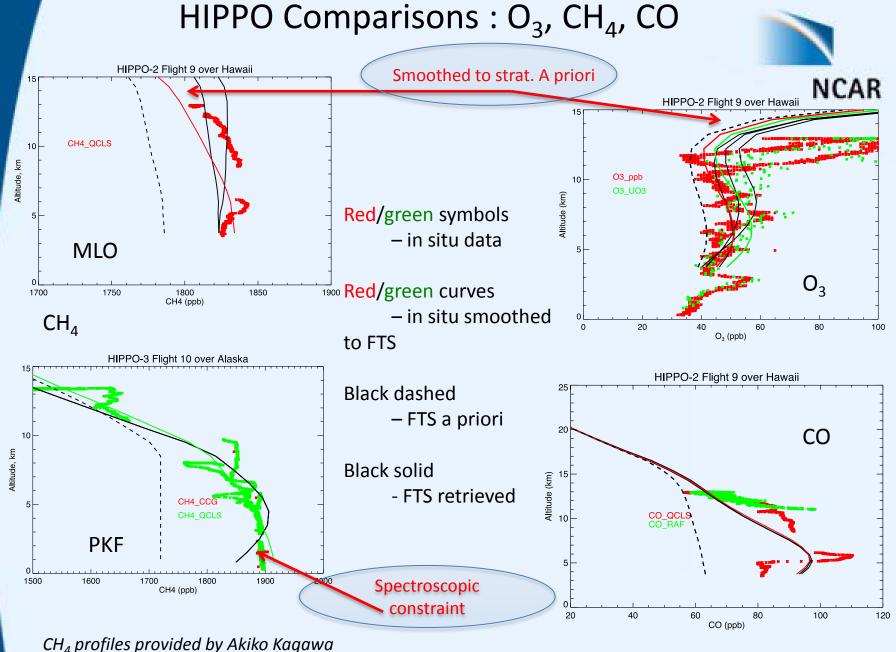


 $O_3$ 


#### **Altitude Resolution Depends on:**





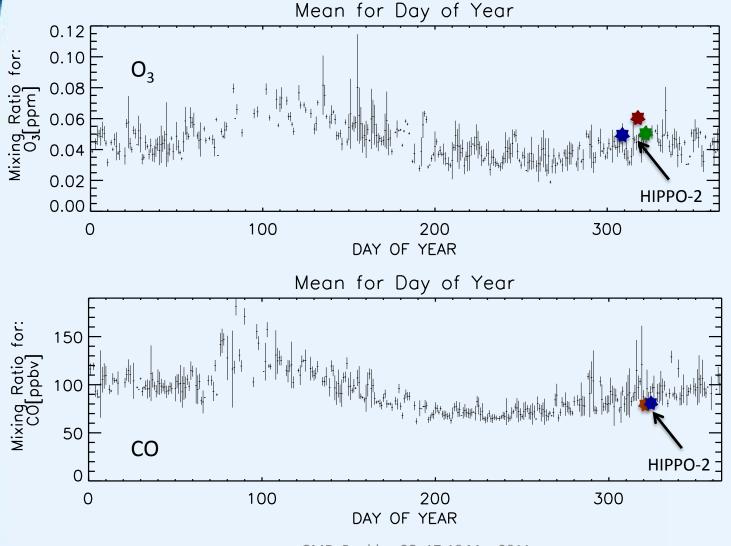
- √ Vertical profile / site
- **√** Spectroscopy
- ✓ Interfering species
- ✓ Spectral Resolution
- ✓ Spectral SNR
- ✓ Solar zenith angle
- ✓ Inst. response or compensation

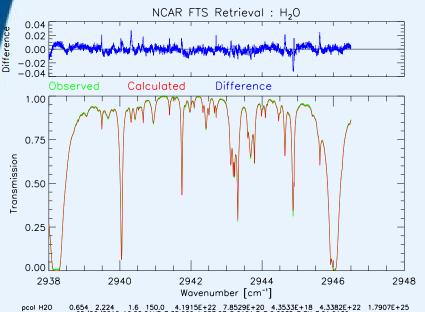


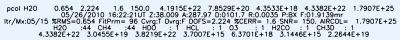


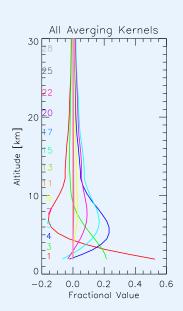

 $C_2H_6$ 

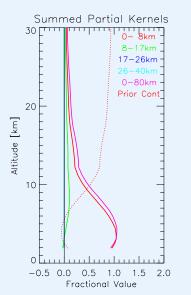
CO


HCI





CH<sub>4</sub> profiles provided by Akiko Kagawa and Yasko Kasai, NICT, Japan GMD, Boulder, CO 17-18 May 2011


#### HIPPO measurements in context of long term record of CO & $O_3$ From MLO FTS





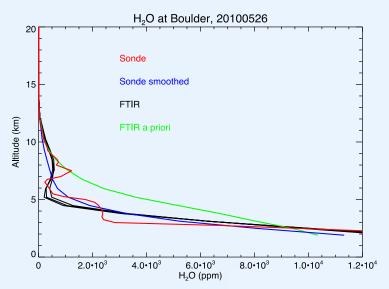




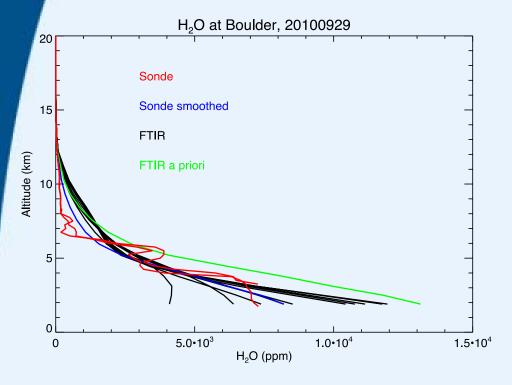





#### Boulder H<sub>2</sub>O Retrieval Example 26 May 2010




Left: Spectral fit

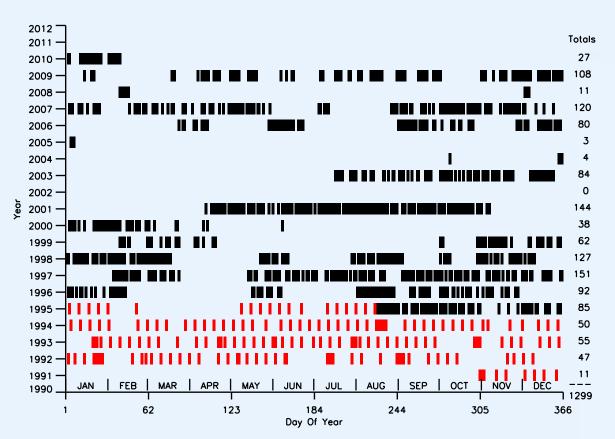

Below Left: Averaging Kernels

**Below Right: Profiles** 

## 14 Coincidences to date Possible GRUAN measurement



Boulder FPH sonde data
Thanks Dale Hurst, Emrys Hall




#### NCAR 20100929 Launch at 17:24UT

- > 7.3e3ppm at surface (1.75km)
- Retrievals from 2h prior to 4 post launch show continuous increase at surface through day
- On descent sonde stops at 3.25km& 7.3e3ppm

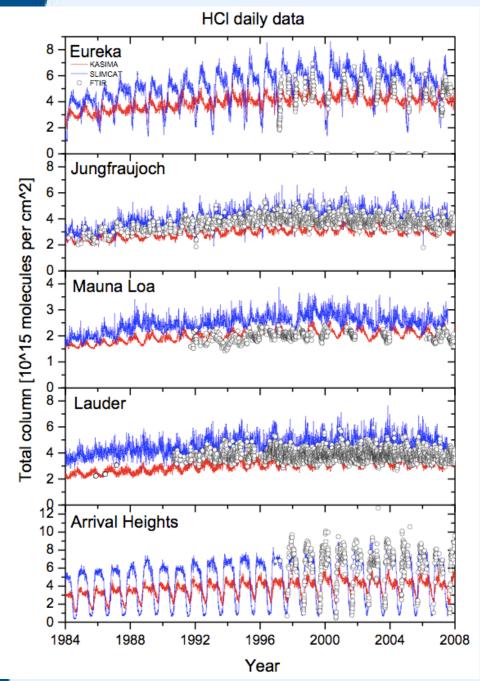
|              | PPM @3km | PPM @2.5 | PPM @2km | COLUMN   | DOFS | RMS  | SAZIM | SZA  | UT       |
|--------------|----------|----------|----------|----------|------|------|-------|------|----------|
|              | 4.2E-03  | 4.2E+03  | 4.1E+03  | 3.26E+22 | 2.3  | 1.00 | 298.4 | 63.9 | 15:22:14 |
| ← Launch     | 5.5E-03  | 6.0E+03  | 6.4E+03  | 4.06E+22 | 2.2  | 0.98 | 307.9 | 57.0 | 16:05:19 |
|              | 5.5E-03  | 6.5E+03  | 7.4E+03  | 3.97E+22 | 2.2  | 1.00 | 308.8 | 56.5 | 16:09:06 |
|              | 6.1E-03  | 7.4E+03  | 8.5E+03  | 4.54E+22 | 2.3  | 0.88 | 329.1 | 47.2 | 17:22:35 |
|              | 6.2E-03  | 7.3E+03  | 8.2E+03  | 4.50E+22 | 2.3  | 0.88 | 331.5 | 46.5 | 17:30:14 |
|              | 6.5E-03  | 8.5E+03  | 1.0E+04  | 4.85E+22 | 2.2  | 0.88 | 8.9   | 43.0 | 19:15:26 |
|              | 6.9E-03  | 9.1E+03  | 1.1E+04  | 5.07E+22 | 2.2  | 0.95 | 23.7  | 45.3 | 19:57:44 |
| <b>-</b>     | 6.8E-03  | 8.9E+03  | 1.1E+04  | 5.03E+22 | 2.2  | 0.93 | 26.1  | 45.9 | 20:05:02 |
| <b>←</b> End | 7.2E-03  | 9.5E+03  | 1.2E+04  | 5.25E+22 | 2.3  | 1.06 | 42.3  | 51.7 | 20:58:50 |
|              | 7.2E-03  | 9.6E+03  | 1.2E+04  | 5.23E+22 | 2.3  | 1.08 | 43.3  | 52.2 | 21:02:34 |





# NCAR

#### Observation record since 1991


Oct 1991 – Aug 1995 Bomem DA3 FTS

Aug 1995 - Feb 2010 Bruker 120HR

Jul 2011 anticipated restart with Bruker 125HR

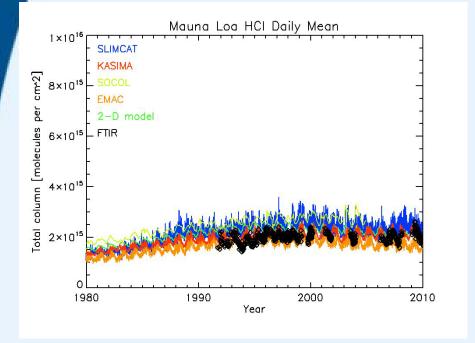
- not re-analyzed yet
- new analysis in process

After Jungfraujoch, Kitt Peak, Lauder – 4<sup>th</sup> longest FTS record, oldest Bruker 120HR





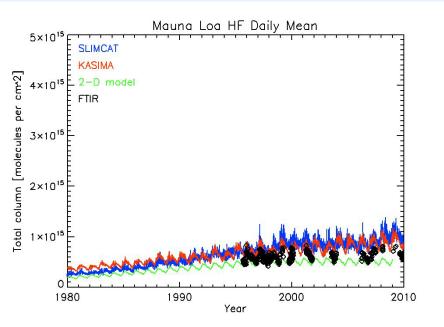
# MLO (and others) Multi-Decade Total Column Record


Left: Initial plot of total column HCl to 2008

#### From:

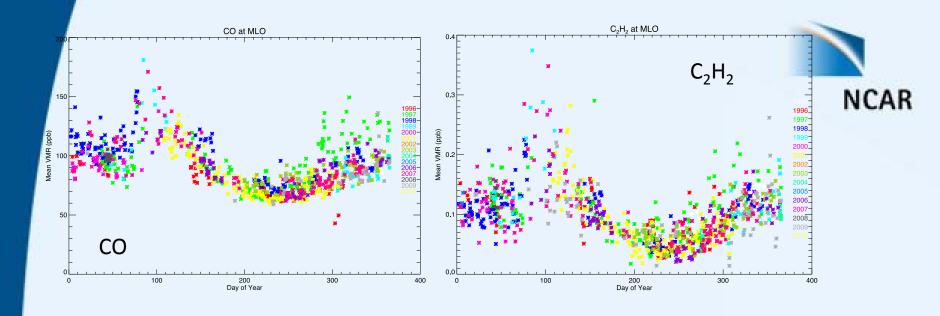
"Observed and simulated time evolution of HCI, ClONO2, and HF total columns", R. Ruhnke et al. ACP to be submitted Plots: Roland Ruhnke & Regina Kohlhepp Karlsruher Institut für Technologie

- •17 FTS sites
- •Records 1977-present

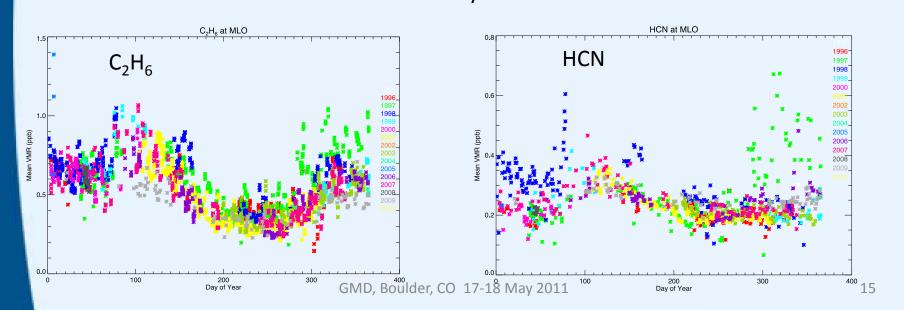

May 2011 13

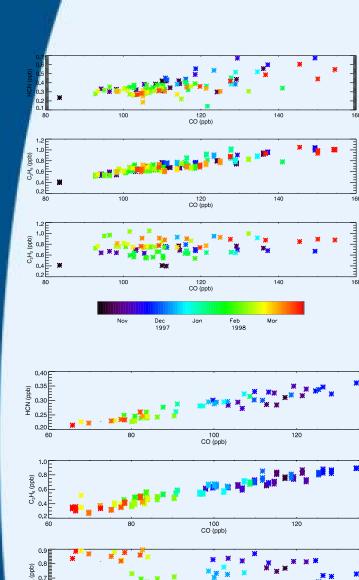





Left: Total column HCl model and MLO data to 2010

Below: Total column HF model and MLO data to 2010





Other species, recent or pending studies:

HCOOH, F. Paulot et. al. 2010 Ethane, C. Paton-Walsh, et. al. Methane, R. Sussmann, et. al.



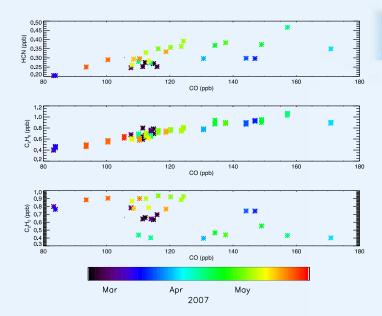
1996-2010 Mean tropospheric VMR (3.5-14.7km) Seasonal Cycles





100 CO (ppb)

Jun


2001

120

Jul

80

May





Upper left fall 1997 through spring 1998 Lower left spring 2001 Upper right spring 2007

Best correlation  $C_2H_6$  & Lower values of HCN Little with  $C_2H_2$ 

NCAR

#### **New MLO FTS**



- ➤ Refurbished instrument -> current 125HR specifications
- ➤ New motor drive sub-system -> improved instrument response & stability
- ➤ New control and data electronics -> *no limit on band width, increased SNR*
- New dual aperture wheel and motors -> improved alignment stability and stray light reduction
- Additional optical filter changer -> increased # spectral bands for narrow (high SNR eg  $H_2CO$ ,  $SF_6$ ) to NIR (better  $CO_2$  & isotopologues)
- Additional detectors, from 2 to 4 -> eg. InGaAs NIR
- Linux system Improved communication & operational stability -> increased data rate

**ETA July 2011** 



#### Summary



- Recent advances in retrievals provide new course vertical profiles & improved total columns
- Homogenization of NDACC-IRWG retrieval processing will yield more consistent global data
  - ♦ Data for many species/sites already archived
- ♦ MLO data set re-analysis well in process
- ♦ \*New MLO FTS should be online July 2011

MLO FTS is supported by NOAA, NASA, NSF thanks to support from J. Barnes and P. Fukumura-Sawada at MLO Network for the Detection of Atmospheric Composition Change



# 2011 NDACC Symposium

AR

An International Symposium Celebrating 20 Years of Global Atmospheric Research Enhanced by NDACC/NDSC Observations

7-10 November 2011, Reunion Island, France

- Long-term evolution and trends in ozone, atmospheric composition, temperature, aerosols, and surface UV in the polar regions and at mid- latitudes
- Tropical and sub-tropical observations and analyses
- Interactions between atmospheric composition and climate, in collaboration with NDACC Cooperating Networks
- Satellite calibration / validation
- New observational capabilities



















end