Quantification of anthropogenic emissions from an urban region:

First results of time-integrated flask samples from the Indianapolis Flux Project (INFLUX)

Jocelyn Turnbull, Colm Sweeney, Doug Guenther, Pieter Tans, NOAA/ESRL and CIRES, University of Colorado

Natasha Miles, Scott Richardson, Thomas Lauvaux, Kenneth Davis, Pennsylvania State University

> Paul Shepson, Obie Cambaliza, Purdue University Kevin Gurney, Arizona State University Scott Lehman, INSTAAR, University of Colorado NOAA/ESRL Carbon Cycle Group, INSTAAR Isotope and ¹⁴C Lab Staff

INFLUX: Indianapolis Flux Project

Develop and test techniques/approaches for measurement of urbanscale greenhouse gas emission fluxes – top-down and bottom-up

Flasks - 52 species and isotopes

Aircraft based measurements ~biweekly flights In situ and flasks

Bottom-up inventories
Vulcan 0.1° for US
Hestia block level for
Indianapolis

modeling

Mass balance approach

WRF-CHEM inversions

INFLUX tower flask sampling

- * New integrated flask sampling system
- * First flask measurements

Why use time-integrated flask samples?

In urban regions, can have substantial variability in mixing ratios – integrated samples reduce some of this noise

Match atmospheric sampling with the ~1 hour time step of regional models and meteorological data

Keep integrating time short enough that meteorology is consistent

Integrated flask sampling

- Sample collected over 1 hour
- Mix 1 hour of air by flowing through a large mixing volume
- Vary flow rate during filling to obtain close to linear mixture
- Collect air into 2 PFP flasks for measurement

Integrated flask sampling validation

For comparison: LEF 396 m in situ vs grab flask samples (2006-2011) in situ – flask difference 0.03±0.38 ppm

INFLUX: Tower flask results

Flask samples collected only when Tower 2 is downwind

Tower 1 is always upwind, background station

(Criteria met 25% of days)

CO₂ enhancements across Indianapolis

Enhancements across Indianapolis

Strong enhancements in most anthropogenic species

$\Delta^{14}CO_2$ and fossil fuel CO_2

 $\Delta^{14}\text{CO}_2$ is lower at Tower 2 - ^{14}C -free CO_2 ff decreases $\Delta^{14}\text{CO}_2$

Tower 1
Tower 2

 $\Delta^{14} \mathrm{CO}_2$ (permil)

2010.96

2010.98

2011.00

2011.02

Date

2011.04

2011.06

2011.08

2011.10

 $\Delta^{14}CO_2$

CO₂ff enhanced at Tower 2

Contributions to CO₂ enhancement

Indiana has 10% bio-ethanol in gasoline – expect ΔCO_2 7-10% higher than ΔCO_2 ff CO_2 ff and bio-ethanol explain all of ΔCO_2 in winter No significant respiration/photosynthesis contribution

Correlation with CO and benzene

Emission ratios are slighter lower than observed in other US cities Large power plant contributes 30% of Indy CO₂ff = lower emission ratios?

Summary

- * INFLUX towers use a new time-integrated flask sampling system to collect samples averaged over a 1 hour period
- * Tower sampling is designed to capture both upwind (background) and downwind signals
- * Strong enhancements in anthropogenic species across the urban region
- In winter in Indianapolis, the CO₂ enhancement appears to be entirely due to CO₂ff and bio-ethanol (there is no apparent photosynthesis/respiration signal)
- Reasonable correlations of CO₂ff with combustion tracers such as CO and benzene, with emission ratios slightly lower than Western US cities, likely due to influence of power plant
- * Correlations with other species (e.g. halocarbons) also seen

INFLUX: Indianapolis Flux Project

Develop and test techniques/approaches for measurement of urbanscale greenhouse gas emission fluxes – top-down and bottom-up

Aircraft-based measurements – biweekly flights
Driving tours - monthly
Tower-based measurements – 12 towers
In situ - CO₂/CO/CH₄
Flasks – 40 species and isotopes

Bottom-up inventories
Vulcan 0.1° for US
Hestia block level for
Indianapolis

Data analysis and modeling
Mass balance approach
WRF-CHEM inversions

Opportunities for Collaboration

We welcome collaborators to enhance and expand the INFLUX effort. Possibilities include:

- ✓ ¹⁴CO₂ /flask measurements
- ✓ In situ CO measurements
- ✓ Measurement from vehicles
- ✓ Other species and isotopes

Atmospheric transport will be a primary source of uncertainty in our final results:

- ✓ wind profiler (4Km)
- ✓ Airborne doppler profiler
- ✓ Radiosonde measurements

Remote Sensing

- \checkmark GOSAT (CO₂, CH₄), MOPITT (CO)
- MODIS, LANDSAT (Biosphere), AVIRIS (IR emissions), FTIR

New Methods

- ✓ Inverse Modeling
- ✓ Multiple bottom-up data streams
- New measurement techniques and species