## Decadal trends in observed analytical uncertainties for a long series of IMPROVE elemental data

Krystyna Trzepla-Nabaglo and Warren White

Work supported by United States National Park Service Contract C2350-04-0050 to UC Davis

May 2011



### Measurement methods evolve:

PIXE, vac Mo XRF, air Cu XRF, He Cu XRF, vac



#### http://vista.cira.colostate.edu/improve/Data/QA\_QC/Advisory.htm



The IMPROVE network has always used the same size selective inlets and Teflon filters to collect 24h PM<sub>2.5</sub> samples for elemental analyses. All original sample filters collected since 1995 are **archived** at UC Davis.

Because the past analytical methods were all non-destructive, the archived filters can be reanalyzed with the current analytical protocol. For any one site, the historical series can be processed in a single analytical batch to generate a homogeneous data set.



Sites selected for reanalysis:

Great Smoky Mtns (completed) Mount Rainier Point Reyes

## Frequency of robust detection in Great Smoky Mountains samples with both analyses valid.

| samples                 | 434        | 324              | 513        | samples | 1271   |
|-------------------------|------------|------------------|------------|---------|--------|
| era                     | 6/95 -     | 12/01 -          | 1/05 -     | 0.40    | 6/95 - |
|                         | 11/01      | 12/04            | 11/09      | era     | 11/09  |
| mathad                  | PIXE       | Cu XRF           | Cu XRF     | mathad  | Mo XRF |
| methou                  | in vacuo   | in He            | in vacuo   |         | in air |
| both analyses > 3 × mdl |            |                  |            |         |        |
| Na                      | 31%        | 6%               | 27%        | Ni      | 12%    |
| Mg                      | 0%         | 0%               | 2%         | Cu      | 92%    |
| Al                      | 35%        | <b>26%</b>       | <b>67%</b> | Zn      | 100%   |
| Si                      | 97%        | 86%              | 95%        | As      | 13%    |
| Р                       | 0%         | 0%               | 0%         | Se      | 98%    |
| S                       | 100%       | 100%             | 100%       | Br      | 100%   |
| Cl                      | 0%         | 0%               | 0%         | Rb      | 10%    |
| К                       | 100%       | 100%             | 100%       | Sr      | 26%    |
| Ca                      | 95%        | 99%              | 100%       | Zr      | 0%     |
| Ti                      | <b>60%</b> | 96%              | 99%        | Pb      | 99%    |
| V                       | 3%         | <mark>68%</mark> | 82%        |         |        |
| Cr                      | 2%         | 23%              | <b>42%</b> |         |        |
| Mn                      | 8%         | 93%              | 99%        | coding: |        |
| Fe                      | 100%       | 100%             | 100%       | < 10%   | < 80%  |

# Culled detection rates at Great Smoky Mountains: yellow highlighting retained in subsequent slides

| samples  | 434         | 324     | 513      |  | samples | 1271   |
|----------|-------------|---------|----------|--|---------|--------|
| era      | 6/95 -      | 12/01 - | 1/05 -   |  | 6/95 -  |        |
|          | 11/01       | 12/04   | 11/09    |  | era     | 11/09  |
|          | PIXE        | Cu XRF  | Cu XRF   |  | mathad  | Mo XRF |
| methou   | in vacuo    | in He   | in vacuo |  | methou  | in air |
| both ana | lyses > 3 > | < mdl   |          |  |         |        |
| Na       | 31%         | 6%      | 27%      |  | Ni      | 12%    |
| Al       | 35%         | 26%     | 67%      |  | Cu      | 92%    |
| Si       | 97%         | 86%     | 95%      |  | Zn      | 100%   |
| S        | 100%        | 100%    | 100%     |  | As      | 13%    |
| К        | 100%        | 100%    | 100%     |  | Se      | 98%    |
| Ca       | 95%         | 99%     | 100%     |  | Br      | 100%   |
| Ti       | 60%         | 96%     | 99%      |  | Rb      | 10%    |
| V        | 3%          | 68%     | 82%      |  | Sr      | 26%    |
| Cr       | 2%          | 23%     | 42%      |  | Pb      | 99%    |
| Mn       | 8%          | 93%     | 99%      |  |         |        |
| Fe       | 100%        | 100%    | 100%     |  | coding: | < 80%  |

## Correlation: $r([c]_{orig}, [c]_{rean})$

7

|            |           |         |             | - |         |        |
|------------|-----------|---------|-------------|---|---------|--------|
| samples    | 434       | 324     | 513         |   | samples | 1271   |
| 0.10       | 6/95 -    | 12/01 - | 1/05 -      |   | 0.00    | 6/95 - |
| era        | 11/01     | 12/04   | .2/04 11/09 |   | era     | 11/09  |
|            | PIXE      | Cu XRF  | Cu XRF      |   | mathad  | Mo XRF |
| method     | in vacuo  | in He   | in vacuo    |   | method  | in air |
| correlatio | on betwee |         |             |   |         |        |
| Na         | 0.31      | 0.07    | 0.32        |   | Ni      | 0.97   |
| Al         | 0.83      | 0.37    | 0.87        |   | Cu      | 0.90   |
| Si         | 0.94      | 0.93    | 0.92        |   | Zn      | 0.99   |
| S          | 1.00      | 0.98    | 1.00        |   | As      | 0.76   |
| К          | 0.98      | 0.98    | 1.00        |   | Se      | 0.97   |
| Ca         | 0.98      | 0.98    | 1.00        |   | Br      | 0.94   |
| Ti         | 0.62      | 0.99    | 0.98        |   | Rb      | 0.39   |
| V          | 0.12      | 0.87    | 0.94        |   | Sr      | 0.86   |
| Cr         | 0.68      | 0.55    | 0.88        |   | Pb      | 0.89   |
| Mn         | 0.24      | 0.93    | 0.99        |   |         |        |
| Fe         | 1.00      | 0.99    | 1.00        |   | coding: | > 0.9  |

All Great Smoky Mountains samples with both analyses valid; non-detects are evaluated as ½MDL.

## Long-term precision: $\frac{var([c]_{orig} - [c]_{rean})^{1/2}}{(c_{l})^{1/2}}$

### $mean([c]_{rean})$



All Great Smoky Mountains samples with both analyses valid; non-detects are evaluated as ½MDL.

#### $mean([c]_{orig}-[c]_{rean})$

Relative bias:

 $mean([c]_{reanal})$ 

9

| samples    | 434      | 324     | 513      | samples | 1271   |                                                           |
|------------|----------|---------|----------|---------|--------|-----------------------------------------------------------|
| ora        | 6/95 -   | 12/01 - | 1/05 -   | 012     | 6/95 - |                                                           |
| era        | 11/01    | 12/04   | 11/09    | era     | 11/09  |                                                           |
| mathad     | PIXE     | Cu XRF  | Cu XRF   | mothod  | Mo XRF |                                                           |
| methou     | in vacuo | in He   | in vacuo | methou  | in air |                                                           |
| relative b | pias     |         |          |         |        |                                                           |
| Na         | -43%     | 29%     | -50%     | Ni      | -14%   |                                                           |
| Al         | -42%     | -45%    | -32%     | Cu      | -3%    | reanalyzed. 0.9 %/year                                    |
| Si         | -32%     | -13%    | -21%     | Zn      | -5%    |                                                           |
| S          | -1%      | -2%     | 2%       | As      | 10%    |                                                           |
| K          | 5%       | 0%      | 1%       | Se      | 7%     |                                                           |
| Ca         | 7%       | -7%     | -1%      | Br      | 38%    |                                                           |
| Ti         | 212%     | -1%     | 2%       | Rb      | 4%     |                                                           |
| V          | 287%     | 9%      | -8%      | Sr      | -9%    |                                                           |
| Cr         | 716%     | -31%    | -25%     | Pb      | -6%    | 3                                                         |
| Mn         | 65%      | -9%     | -4%      |         |        | L Jan-95 Jan-00 Jan-05 Jan-10 Jan-95 Jan-00 Jan-05 Jan-10 |
| Fe         | 0%       | -5%     | 1%       | coding: | < 10%  |                                                           |

All Great Smoky Mountains samples with both analyses valid; non-detects are evaluated as ½MDL.













VAL > 3MDL in both analyses



### Advice for the analyst:

1. Don't play near the mdl,



2. Focus on the best-determined species you can employ for



your purpose,

- Expect serial correlation in your errors even with consistent methods, and
- 4. Mind the transitions!

