Comparison of Primary Standards/Scales of Key Greenhouse Gases Between NOAA and NIST

<u>J. Rhoderick</u>¹, M. Kelley², W. Miller², G. Mitchell², J. Carney², F. Guenther², B. Hall³, E. Dlugokencky³, D. Kitzis³ and P. Lang³

¹National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899; 301-975-3937, E-mail: george.rhoderick@nist.gov

²National Institute of Standards and Technology (NIST), Boulder, CO 80305

³NOAA Earth System Research Laboratory, Boulder, CO 80305

The Gas Metrology Group of the Analytical Chemistry Division at NIST and the Global Monitoring Division of NOAA/ESRL have been collaborating on comparison of standards for key greenhouse gases: CH₄, N₂O, CO and CO₃. These collaborations help to support NOAA as well as providing a solid link to the Gas Analysis Working Group of the Consultative Committee on the Quantity of Material (CCQM) – Metrology in Chemistry consisting of National Metrology Institutes worldwide, with NOAA being the World Meteorological Organization representative laboratory to the CCQM. Data on recent comparisons of current standards/scales indicate agreement to within 2.5 ppb (0.14 % relative) for CH₄ and 0.07 ppb (0.02 %) for N₂O. Based on the current NOAA 2005 CH₄ scale and applying a correction to previous comparisons (1998), the agreement between NIST/NOAA has been consistent for years. NISTs historical CH₄ analytical data set demonstrates 40 years of consistency for CH₄ in their primary standards and Standard Reference Materials (SRM). The current (2011) NIST N₂O primary standards suite has led to hard evidence as the reason for a 1.2 % disagreement between NIST/NOAA reported in 2004. Differences in N₂O values obtained by NIST using different analytical instrumentation will be discussed. Data for comparison of CO and CO, standards will hopefully be available for discussion. NOAA has also provided cylinders of Niwot Ridge dry air which has been analyzed for these species by both laboratories and will eventually be dual-certified as a NIST SRM. The CH₄ and N₂O data for these cylinders show very good cylinder-to-cylinder consistency between NIST and NOAA.

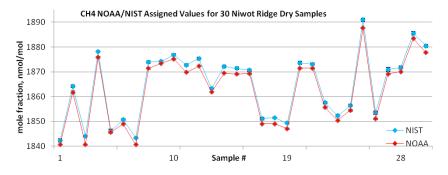
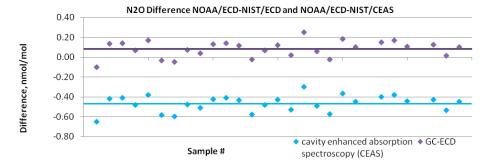



Figure 1. CH₄ NOAA/NIST assigned values for 30 Niwot Ridge dry samples.

Figure 2. N₂O difference NOAA/ECD-NIST/ECD and NOAA/ECD-NIST/CEAS.