Viable Stratospheric Transport Monitoring Program; Vital to Tracking and Improving our Understanding of Climate Change.

F. Moore, E. Ray, J. Elkins, P. Tans, A. Karion, C. Sweeney

Use atmospheric **Cartoons** to indicate:

#1 Changes in Stratospheric Circulation Track Climate Change in the troposphere.

#2 Changes in Stratospheric Circulation are Measurable.

#3 Motivate a Monitoring Program based on Air-Core measurements. Acquiring relatively inexpensive data. Viable Stratospheric Transport Monitoring Program; Vital to Tracking and Improving our Understanding of Climate Change.

F. L. Moore, E. Ray, J.W. Elkins, P.P. Tans, A. Karion, C. Sweeney

Use atmospheric **Cartoons** to indicate:

#1 Changes in Stratospheric Circulation Track Climate Change.
Changes in Stratospheric Circulation are a Major Feed Back on Climate Change.

#2 Changes in Stratospheric Circulation are Measurable.

#3 Motivate a Monitoring Program based on Air-Core measurements. Acquiring relatively inexpensive data. Changes in Stratospheric Circulation are a major Feed Back on Climate Change.

Models require accurate description of Stratospheric Circulation:

Troposphere: Storm track shift (toward the equator) Storm intensity (More "Storminess") Corresponding Water distribution shifts. Lower Pressure across the Atlantic and Pacific at surface.

Solomon et. al 2010, 3 decades of H_2O change responsible for ~ 30% of surface ΔT

Scaife et. at. 2011, Change in Stratospheric Winds induce change in Baroclinic Eddy Growth. Butchart et. al. 2011, Strong link between QBO and tropical upwelling and the Vortex.

Tropospheric CLIMATE CHANGE to First Order

*Drives Change in Weather in the troposphere.

CLIMATE CHANGE to first order

*drives change in weather in the troposphere. >> Induces Change in Wave Generation

*drives change in weather in the troposphere.

>> Induces change in wave generation

* Drives Changes in Stratospheric Circulation

*drives change in weather in the troposphere.

>> Induces change in wave generation

* Drives changes in Stratospheric Circulation

CLIMATE CHANGE

*drives change in weather in the troposphere. >> Induces cha

* Drives changes in stratospheric circulation

>> Induces change in wave generation

Mean-circulation and Re-circulation

CLIMATE CHANGE

*drives change in weather in the troposphere. >> Induce

* Drives changes in stratospheric circulation

>> Induces change in wave generation

Mean-circulation and Re-circulation

Latitude

Stratospheric Mean Age of Air Trend at 25-32 km

Decreasing mean ages caused by an increasing strength of the stratospheric circulation are consistent, robust results in nearly all CCMs.

Stratospheric Mass Flux Changes Implied well below 25 km

#1 Changes in Stratospheric Circulation Track Climate Change.

Take home message

Stratospheric Circulation Changes are Occurring,

and

A quality Climate Climate Monitoring program needs a Measurement Based Stratospheric Circulation Program.

Transport Time Scales from <u>Age Tracers</u> SF₆ or CO₂ Path and Mass Flux from <u>Photolytic</u> Tracers halon-1211, CFC's and N2O

Transport Time Scales from <u>Age Tracers</u> SF₆ or CO₂ Path and Mass Flux from <u>Photolytic</u> Tracers halon-1211, CFC's and N2O

Transport Time Scales from <u>Age Tracers</u> SF₆ or CO₂ Path and Mass Flux from <u>Photolytic</u> Tracers halon-1211, CFC's and N2O

Transport Time Scales from <u>Age Tracers</u> SF₆ or

CO Path and Mass Flux from <u>Photolytic Tracers</u> halon-1211, CFC's and N₂O

<u>Tape Recorder Tracers</u> add transport info below halon-1211 Cutoff Attenuation and Phase Lag.

Air Core coupled to an Auto Sampler (Modified Mini -PFP) Bring Partitioned Air from, Tropics, SH, and Vortex Analyze by GC in Boulder.

Affordable:

Air Core cost comparable to O_3 or H_2O Sonde < $\frac{$2,000}{}$

Appropriate for Long Term Monitoring: One GC <u>calibration errors</u> common across data set

Air Core coupled to an Auto Sampler (Modified Mini -PFP) Bring Partitioned Air from, Tropics, SH, and Vortex Analyze by GC in Boulder. Affordable:

Air Core cost comparable to O_3 or H_2O Sonde $< \frac{$2,000}{}$

Appropriate for Long Term Monitoring: One GC calibration errors common across data set

Targeted Trace Gases are at the ppt level (GC), were as CO_2 , CH_4 are above the ppm level.

Air Core coupled to an Auto Sampler

Bring Partitioned Air from, Tropics, SH, and Vortex Analyze by GC in Boulder. Affordable:

Air Core cost comparable to O_3 or H_2O Sonde < <u>\$2,000</u>

Appropriate for Long Term Monitoring: One GC <u>calibration errors</u> common across data set

Targeted Trace Gases are at the ppt level were as CO2 , CH4 are above the ppm level.

Bottom Line: Air Core 100 ft 1/8 inch SS tube, fed by a 100 feet of 1/4 inch SS tube Gives Data from 32 km to the troppause with 5 mbar sample resolution.

Translates to: A Package that is below the FAA 6 lb regulations, >> reducing cost and increasing versatility.

Air Core coupled to an Auto Sampler

Bring Partitioned Air from, Tropics, SH, and Vortex Analyze by GC in Boulder. Affordable:

Air Core cost comparable to O_3 or H_2O Sonde $< \frac{$2,000}{}$

Appropriate for Long Term Monitoring: One GC <u>calibration errors</u> common across data set

Targeted Trace Gases are at the ppt level were as CO2 , CH4 are above the ppm level.

Bottom Line: Air Core 100 ft 1/8 inch SS tube, fed by a 100 feet of 1/4 inch SS tube Gives Data from 32 km to the troppause with 5 mbar sample resolution.

Translates to: A Package that is below the FAA 6 lb regulations, >> reducing cost and increasing versatility.

Recently received Funds from the NOAA UAS program.

- >> GC front end Development.
- >> A couple Balloon Flights out of Boulder.
- >> Sky Wisp UAS flight.

CLIMATE CHANGE

*drives change in weather in the troposphere. >> Induces change in wave generation

Much more complicated, especially when we include Zonal winds.

What is Different from Current AirCore $CO_2/CH_4/CO$ measurements?

Target Stratosphere:

Our stratospheric signals are large.

CFC-11 changes by 100% going from its troposphere value to zero at altitude, while CO₂ changes by only 6%.

Translates to: Our targeted accuracy of 1.0% to obtain science objectives. Compared to 0.1% to 0.05% for CO₂ measurements.

<u>Analyze</u> air from the AirCore with a gas chromatograph (GC). <u>Sample volume of < 1 sccm for each channel (minimum 2 channels.)</u> <u>> Substantially smaller that that of the Picarro optical cell</u>.

Concentration:

Targeted Trace Gases at the ppt level were as CO_2 , CH_4 are above the ppm level.

Bottom Line: AirCore 100 ft 1/8 inch SS tube, fed by a 100 feet of 1/4 inch SS tube will acquire data with 10 mbar resolution from below the tropopause up to 32km in the stratosphere.

Translates to: a Package that is <u>below the FAA 6 lb regulations</u>.

Track Stratospheric Circulation Change due to Climate Change Using Age and Photolytic Traces: SF₆, N₂O, CFC-12, CFC-113, CFC-11, halon-1211

Total Ozone "Residual" Trends

Identify the "residual" total ozone trends due to circulation and mixing changes by using multiple linear regression to remove:

•QBO (NCEP Rean 5S-5N, 10 and 50 hPa) •ENSO (NOAA multivariate ENSO index lagged 6 months (Marsh and Garcia, 2007)) •EESC (2yr age in tropics, 5yr in midlats (Newman et al., 2007)) •Solar cycle (10.7 micron radio flux). •Volcanic aerosol (Deshler et al., 2006).