Global atmospheric distributions of some shortlived halocarbons

S.A. Montzka¹, B.R. Miller², C. Siso², F. Moore², B. Hall¹, J.W. Elkins², A. Andrews², C. Sweeney¹, J.H. Butler², E. Atlas³, S. Wofsy⁴

¹ NOAA/ESRL/GMD, Boulder, CO, USA
 ² CIRES, Univ. of Colorado, Boulder, CO USA
 ³ RSMAS, Univ. of Miami, Miami, FL USA
 ⁴ Harvard University, Cambridge, MA USA

Acknowledgements:

Many other HATS and CCGG group members... NOAA & cooperative site personnel Cooperative site partners from:

- → Chinese Meteorological Administration
- → Environment Canada
- → National Science Foundation
- → US Forest service
- → Univ. of Colorado INSTAAR
- → Weizmann Institute, Israel

NSF-sponsored HIPPO team AGAGE team

- → CSIRO, Australia
- → Harvard Univ.
- → SCRIPPS/Humboldt Univ.
- → Univ. of Bristol, U.K.
- → Univ. Wisconsin, Madison

Focus today on:

	Nominal	
	<u>"Lifetime" (days)</u> **	Loss process
CH ₂ Br ₂	123 d	OH predominantly
CHBr ₃	24 d	mostly photolysis
CH ₃ I	7 d	photolysis predominantly

These gases:

- \rightarrow may account for ~25% of total bromine reaching the stratosphere
- \rightarrow influence tropospheric oxidation processes (ozone; Hg deposition)
- \rightarrow have natural sources predominantly

<u>But,</u>

these influences are not well quantified in part because of our poor understanding of their sources and atmospheric distributions (loss rates are comparable to transport times).

Underlying question:

To what extent can "background" atmospheric distributions of short-lived gases be defined?

** **nominal lifetimes** calculated for OH = 1e6 rad cm⁻³ and photolysis at 5 km (WMO, 2003 and 2011)

Halocarbon Surface Sampling Network ~weekly flasks

Surface flask data from select sites (pair mean and s.d.)

Annual means at surface sites (2 to 17 yr records; ~wkly. sampling)

Halocarbon Surface and Aircraft Sampling Network

Sample locations during November 2009...

the 2nd HIPPO deployment

CH₂Br₂ in the FREE troposphere

in different months

High alt surface 2.8 – 3.8 km
HIPPO flasks, 1.5 – 8 km
Aircraft profiles, 1.5 – 8 km

Parts per trillion

CHBr₃ in the FREE troposphere

in different months

High alt. surface 2.8 – 3.8 km HIPPO flasks, 1.5 – 8 km Aircraft profiles, 1.5 – 8 km

CH₃I from selected TERRESTRIAL sites in the NOAA tower network

Fraction of Year

Summary:

Ongoing sampling and short-term projects allow us to characterize trace gas variability over latitudes, longitudes, and altitudes...

The results show:

→ Consistent mean mixing ratios from year-to-year for all three short-lived gases at a wide range of sites, but large site-to-site differences...

→ Higher consistency in results from the free troposphere... with seasonal variations driven primarily by losses especially for CH₂Br₂ and perhaps also CHBr₃. CH₃I exhibits higher variability (shorter lifetime!). e.g., perhaps a true "background" for CH₂Br₂.

→ Boundary-layer mixing ratio enhancements above land and sea whose magnitudes vary seasonally (less so for CH_2Br_2 , more so for $CHBr_3$ and especially CH_3I over land)

For short-lived gases, <u>free tropospheric data</u> provide an important context that allow an assessment of: -distribution and seasonality of sources

-relative influence of local processes on any particular site -usefulness of a site for monitoring long-term broad-scale changes

Glass (higher frequency vs SS (low freq) flasks at LEF (mid-west US) ...as monthly means

 Plans to include:
 → flask results vs. AGAGE in-situ instrumentation

CH₃I

2010

2009

201

2011

Measurement capabilities, methyl iodide

Scale stability (essex cylinders, standard scale, etc)

Scale stability (essex cylinders, standard scale, etc)

Scale stability (essex cylinders, standard scale, etc)

Annual means at surface sites (2 to 17 yr records)

