Radiative Forcing Efficiency of a Forest Fire Smoke Plume at the Surface and TOA

John A. Augustine¹, Robert S. Stone^{1,2}, David Rutan³, and Ellsworth G. Dutton¹

¹Earth System Research Laboratory, Global Monitoring Division, Boulder, CO ²Cooperative Institute for Research in Environmental Sciences, University of Colorado ³NASA Langley Research Center, A.S.&M., Inc., Hampton, VA

Fourmile Canyon Fire 6 Sept. 2010

Our focus is to compute the Radiative Forcing Efficiency (RFE) of the smoke aerosol at the <u>Surface</u> and <u>Top of Atmosphere (TOA)</u>

RFE = Δ Total Net Rad/unit AOD_{500nm}

Surface, Atmosphere, and TOA

$$RFE_{atmos} = RFE_{TOA} - RFE_{sfc}$$

• Smoke sometimes covers large parts of the globe for several months and can affect climate variability

 Case studies are useful for validating smoke aerosol parameterizations in models

Smoke particles are very small and may not be handled well by generic aerosol parameterizations

Rare comprehensive data sets like that on the Fourmile Canyon fire should be exploited

· Siberian Forest fires

fires

Abundant clear-sky surface measurements throughout the day allowed direct calculation of

TOA – not as easy

- 1. Satellite observations
 - NASA's Terra and Aqua polar orbiters.
 - First choice CERES broadband imagers
 - Sampling is minimal--1 or 2 passes per day
 - TOA radiative forcing is computed by comparing an aerosol case to a reference case
- 2. Radiative transfer model

Available Satellite data

- 1.CERES SW and IR broadband imagers, 20 km resolution at nadir
- 2. MODIS 36-channel spectral imager, 1 km resolution at nadir

Problems:

•CERES could not resolve the Fourmile plume

•MODIS could, but NASA does not do a narrowband-to-broadband conversion

MODIS Spectral radiance to broadband conversion

Band	Wavelength (nm)	Resolution (m)	Primary Use	
1	620-670	250m	Land/Cloud/Aeroso	
2	841-876	250m	Boundaries	
3	459-479	500m		
4	545-565	500m	Land/Cloud/Aeroso Properties	
5	1230-1250	500m		
6	1628-1652	500m		
7	2105-2155	500m		
8	405-420	1000m		
9	438-448	1000m	Ocean Color/ Phytoplankton/ Biogeochemistry	
10	483-493	1000m		
11	526-536	1000m		
12	546-556	1000m		
13	662–672	1000m		
14	673–683	1000m		
15	743–753	1000m		
16	862-877	1000m		
17	890-920	1000m		
18	931–941	1000m	Atmospheric Water Vapor	
19	915–965	1000m		

+ 17 more (3660 - 14385 nm)

Tang et al. [2006], *JGR* used 159,000 MODTRAN runs to produce a linear model that converts the the first 7 • spectral channel reflectances (ρ) to SW broadband reflectance (r) RMS error = 0.01

 $\mathsf{r} = \mathsf{b}_0 + \rho_1 \mathsf{b}_1 + \rho_2 \mathsf{b}_2 + \rho_3 \mathsf{b}_3 + \rho_4 \mathsf{b}_4 + \rho_5 \mathsf{b}_5 + \rho_6 \mathsf{b}_6 + \rho_7 \mathsf{b}_7$

where:

 $b_i = c1_i + [c2_i/(1+exp((1/cos(VZA)-c3_i/c4_i)))]$

$$o_i = \pi L_i d^2 / Eo_i \cos(SZA)$$

is the measured upwelling radiance for channel i

Surface AOD measurements at **BAO** and **SURFRAD** (TBL)

NASA Terra MODIS imager 1820 UTC, ~ 2 hours after the fire started

Terra broadband reflectance 6 Sept. 2010, 1820 UTC

RMS=0.01

NASA Aqua MODIS imager 2000 UTC, ~ 3.5 hours after the fire started

Aqua broadband reflectance 6 Sept. 2010, 2000 UTC

Terra broadband TOA SW flux 6 Sept. 2010, 1820

Calculations of SW Radiative Forcing

SW forcing is dominant -- can be 20 times greater than LW forcing

Net SW_{TOA} = $[1361*cos(SZA)/d^2] - SW_{TOA}$ (satellite)

 $RF_{TOA} = Net SW_{TOA}$ (plume) - $Net SW_{TOA}$ (ref. area)

 $RF_{sfc} = AOD_{500} * RFE_{SW}$ (from Stone et al. 2011)

 $RF_{atmos} = RF_{TOA} - RF_{sfc}$

RF Results (θ ~							
	AOD ₅₀₀	Sfc355°)	TOA RF _{sw}	Atmos. RF _{sw}	Atmos. heating (°K/day)		
SURFRAD	0.060 (-1 r	nin.)					
1820 UTC	0.057		-0.6 Wm ⁻²				
Terra	0.058 (+1	min.)					
BAO	3.38						
1820 UTC	3.37 3.97	-512 Wm ⁻² (±5%)	-113 Wm ⁻² (±6%)	+399 Wm ⁻² – (±7.5%)	→ 12.6		
SURFRAD	1.36						
2000 UTC	1.37	-255 Wm ⁻²	-58 Wm ⁻²	+197 Wm ⁻² –	→ 8.4		
Aqua	1.45						
BAO	1.01						
2000 UTC	1.23	-187 Wm ⁻²	-75 Wm⁻²	+112 Wm ⁻² -	→ 6.5		
	1.33						

5°C cooling measured at surface

	RFE Results (θ ~ 35°)								
	AOD ₅₀₀	Sfc RFE _{sw}	TOA RFE _{sw}	Atmos. RFE _{sw}					
SURFRAD	0.060 (-1 min.)								
1820 UTC	0.057		0 Wm ⁻² /AOD						
Terra	0.058 (+1 min.)								
BAO	3.38								
1820 UTC	3.37 3.97	-152 Wm ⁻² /AOD (±5%)	-34 Wm ⁻² /AOD (±6%)	+118 Wm ⁻² /AOD (±7.5%)					
SURFRAD	1.36								
2000 UTC	1.37	-186 Wm ⁻² /AOD	-42 Wm ⁻² /AOD	+143 Wm ⁻² /AOD					
Aqua	1.45								
BAO	1.01								
2000 UTC	1.23 1.33	-152 Wm ⁻² /AOD	-61 Wm ⁻² /AOD	+91 Wm ⁻² /AOD					

Summary

 MODIS SW spectral to broadband conversion algorithm gives reasonable results at TOA

 TOA aerosol radiative forcing computed from MODIS-based broadband SW fluxes consistent with similar empirical and model case study results

Plans

 Model observed <u>surface</u> radiation fluxes with MODTRAN using the actual particle size distribution as measured by CSD, measured spectral albedo, aerosol microphysics, etc.

 Model the TOA SW fluxes at the BAO and SURFRAD locations to validate the satellite-based results and expand TOA calculations to the entire day

Use MODTRAN to estimate LW TOA radiative forcing of the smoke aerosol

END

Questions?

Analytic Approximation method of Caracena (1987) used to interpolate to a 0.1 km grid

$$\langle F_{i,j} \rangle = \sum_{k=1}^{N} W_{i,j,k} \frac{f_k}{N_{i,j}},$$
 Weighted sum
where : $N_{i,j} = \sum_{l=1}^{N} W_{i,j,k}$
Gaussian weights are used: $W_{i,j,k} = \exp\left\{-\frac{|r_{i,j,k}|^2}{L^2}\right\}$

To effect three more passes of analyzing and removing residuals, the above equation becomes:

$$\langle F_{i,j} \rangle^{(4)} = \sum_{k=1}^{N} W_{i,j,k} \frac{\left(4I - 6W + 4W^2 - W^3\right) f_k}{N_{i,j}}$$

where : W = crossweight matrix

and : *I* = *Identity matrix*

Weighted sum with residuals removed in three successive passes

GPS water vapor data

(Courtesy of Seth Gutman)

Radiative Forcing Efficiency (RFE_x) valid for sfc. Albedo of 0.15

Terra coverage 18:18:43 to 18:19:24 UTC (41 sec.)

