Thirty Years of Atmospheric CH₄ Monitoring: What Have We Learned?

E. Dlugokencky¹, M. Heller^{1,2}, E.G. Nisbet³, D. Lowry³, P.M. Lang¹, K.A. Masarie¹, A. Crotwell^{1,2}, L. Bruhwiler¹
 ¹NOAA ESRL GMD, ²CIRES,
 ³Royal Holloway, University of London
 Acknowledgement: Paul Fraser and Paul Steele

www.esrl.noaa.gov/gmd/dv/iadv/

IAV: Better Process Understanding

- Mt. Pinatubo and CH₄ lifetime
 SO₂ and SO₄⁼ affected OH production
- Economic collapse in fSU
 - Decreased emissions at high northern latitudes
- Increase since 2007
 Tropical wetlands

In situ CH₄ monitoring: Summary

- CH₄ approaching steady state
 Current imbalance ~16 Tg CH₄ yr⁻¹
- Eruption of Mt. Pintubo
 - Test understanding of OH sink processes
- Economic collapse of former Soviet Union
 Altered trajectory of atmospheric CH₄
- Tropical precipitation: wetland emissions
 - Correlates with ENSO
 - Driver of recent CH₄ increase

Composite Precipitation - La Niña

SCIAMACHY

Increases in SCIA in 2007 and 2008 consistent with in situ observations. Insufficient S/N to identify cause of recent CH_4 increase. Frankenberg et al., JGR, 2011.

GOSAT may be better.

AIRS

Conclusions

- Global CH₄ increase continues in 2010:
 ~6.0 ppb yr⁻¹ from 2007 to 2010
 Largest, most persistent anomaly in record
- Observation-based assessment of causes:
 T and precipitation are key drivers
- Current observation network is insufficient:
 Satellite sensors: low S/N and disinformation
 In situ measurements: increase spatial coverage

Global CH₄ Budget by Source

Source	Bousquet (Tg/yr)	IPCC Range (Tg/yr)
Anthropogenic		
Energy	110±13	74-106
Enteric fermentation	90±14	76-92
Rice agriculture	31±5	31-112
Biomass burning	50±8	14-88
Waste	55±11	35-69
Natural		
Wetlands	$147{\pm}15$	100-231
Termites	23±4	20-29
Oceans	19±6	4-15
Total	525±8	503-610
Sinks	Bousquet (Tg/yr)	IPCC (Tg/yr)
Troposphere	448 ± 1	428-511
Stratosphere	37±1	30-45
Soil	21±3	26-34
Total	506	492-581

Bousquet et al., 2006, Nature, 443, 439-443, doi:10.1038/nature05132.

Constraints on Global CH₄ Budget

- Globally averaged CH₄
 - Atmospheric burden: ~4990 Tg CH₄ in 2011
 - Radiative forcing (since PI): 0.5 W m⁻²
- Rate of increase
 - Imbalance between emissions and losses
- Spatial distribution of CH₄ abundance
 Spatial distribution of emissions
- Seasonal cycle

- Temporal distribution of emissions