Quantification of Urban Fossil Fuel CO, Emissions from the Indianapolis Flux Project (INFLUX)

J. Turnbull¹, M.O. Cambaliza², <u>C. Sweeney</u>³, A. Karion³, T. Newberger³, P. Tans⁴, S. Lehman⁵, K. Davis⁶, N. Miles⁶, S. Richardson⁶, T. Lauvaux⁶, P. Shepson², K. Gurney⁷, Y. Song⁷ and I. Razlivanov⁷

¹GNS Science and Cooperative Institute for Reseach in Environmental Sciences, University of Colorado, Boulder, CO 80309; 644-570-4726, E-mail: j.turnbull@gns.cri.nz
²Purdue University, Department of Chemistry, West Lafayette, IN 47907
³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
⁴NOAA Earth System Research Laboratory, Boulder, CO 80305
⁵Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309
⁶Pennsylvania State University, Department of Meteorology, University Park, PA 16802
⁷Arizona State University, Tempe, AZ 85287

Quantification of fossil fuel CO_2 (CO_2 ff) emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO_2 ff is emitted from urban regions. Measurements of ¹⁴CO₂ can be used to partition CO_2 ff from total CO_2 in flask samples, but it is difficult to obtain sufficient ¹⁴CO₂ measurements to infer the urban emission flux.

In the Indianapolis Flux Project (INFLUX), we make flask measurements of ${}^{14}CO_2$ and ~50 trace gases from a network of towers and light aircraft. CO₂ff and other anthropogenic trace gases are consistently enhanced at tower sites downwind of the city and in the urban plume sampled from the aircraft. The choice of background is critical in isolating the urban CO₂ff component from biospheric CO₂, and we examine this in detail.

Previous studies have used the strong and consistent relationship between CO_2 ff and carbon monoxide (CO) to quantify CO_2 ff. In Indianapolis, we find only weak and variable correlations between CO_2 ff and CO, likely due to the mix of CO_2 ff sources in Indianapolis. Yet in winter, total CO_2 enhancement is consistent with CO_2 ff, and we therefore use total CO_2 enhancement from the high resolution *in situ* total CO_2 measurements from the aircraft in a simple mass balance model to estimate the urban CO_2 ff emissions. An initial comparison shows a ~20% difference between the top-down and bottom-up methods from aircraft samples.

Figure 1. Correlation between fossil fuel CO₂ (CO₂ff) and total CO₂ enhancement (Δ CO₂) at INFLUX downwind tower in winter, using upwind background values from INFLUX Tower 1 (red) or using a continental background from the LEF Site in Wisconsin (blue). When the local upwind tower is used, Δ CO₂ is entirely explained by CO₂ff. When the LEF continental background is used, CO₂ff and Δ CO₂ are both larger, and only about half of Δ CO₂ is explained by CO₂ff. Choice of background is therefore critical in isolating the urban CO₂ff signal.