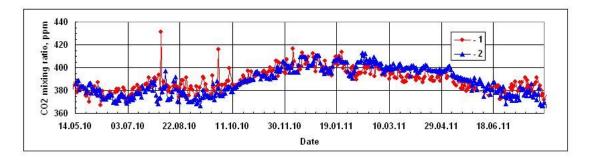

Variations of CO, Mixing Ratios in the Air Near the Ground in the European Territory of Russia

F. Kashin¹, A. Shilkin¹, D. Zamolodchikov² and M. Gytarsky³


¹Federal State Budgetary Institution Research and Production Association "Typhoon", Obninsk, Russia; +7 484 397-15-98, E-mail: kashin@typhoon.obninsk.ru

Presented are the measurement results of CO_2 vertical biogenic flux and mixing ratios obtained in the air near the ground near Valdai Lake (57.9°N, 33.3°E, 214 m above the sea level). The measurement complex (Campbell Scientific Inc.) is mounted on a mast of 42 m height making it possible to automatically observe parameters of the atmospheric boundary layer and the underlying surface. The data obtained (Fig. 1) demonstrate that in July of 2010 a constant increase of CO_2 in the air near the ground was registered. A growth of CO_2 (up to 400 ppm) was also registered on some days in August. The main explanation for such changes of CO_2 is in the blocking anticyclone existing at that time in the European Territory of Russia (ETR). It was formed in July 2010, stayed there for about 50 days, producing anomalous weather: the absence of precipitation and maximal temperatures exceeding all the known record values. High temperatures observed during a long time resulted in a perturbation of the biogenic cycle (photosynthesis-respiration) and a shortened CO_2 biomass sink (Fig.1) where the measurement of CO_2 sinks are shown. Also, at the end of July in the ETR, numerous forest and bog fires occurred that led to atmospheric contamination with burning products and, in particular, to a local CO_2 increase.

Figure 2 shows the results of CO_2 mixing ratios at Valdai Lake and in Obninsk (55.1° N, 36.9° E., 186 m above the sea level). In Obninsk the absorption spectroscopy method is used for determining CO_2 concentrations. The measurement complex includes a Fourier-spectrometer coupled with a multi-pass optical cell. As far as the observation sites are located in different latitudes, the seasonal variations of CO_2 in Obninsk and at Valdai Lake are in good agreement. The variations of CO_2 in July 2010 in Obninsk and at Valdai Lake are similar and show that the reason for the growth of the mixing ratio is the same as the whole territory was under the action of the blocking anticyclone.

Figure 1. Measurement results CO, mixing ratio (1) and biogenic fluxes (2) on the Valdai Lake.

Figure 2. Measurement results CO, mixing ratio in Obninsk (1) and on the Valdai Lake (2).

²Head of Biological Department, Moscow State University, Moscow, Russia

³Head of Department Institute of Global Climate and Ecology, Moscow, Russia