Methane Emission Flux from Indianapolis, IN: Identification and Contribution of Sources to the Total Citywide Emission

<u>M.O.L. Cambaliza</u>¹, P. Shepson¹, B. Stirm², D. Caulton¹, C. Miller¹, A. Hendricks¹, B. Moser¹, A. Karion³, C. Sweeney³, J. Turnbull⁴, K. Davis⁵, T. Lauvaux⁵, S. Richardson⁵, N. Miles⁵, E. Crosson⁶, K. Prasad⁷ and J. Whetstone⁷

¹Purdue University, Department of Chemistry, West Lafayette, IN 47907; 765 496-2404, E-mail: mcambali@purdue.edu
²Purdue University, Department of Aviation Technology, West Lafayette, IN 47907
³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
⁴GNS Science, National Isotope Centre, Lower Hutt, New Zealand
⁵Pennsylvania State University, Department of Meteorology, University Park, PA 16802
⁶Picarro Inc, Santa Clara, CA 94054
⁷National Institute of Standards and Technology (NIST), Boulder, CO 80305

We report the city-wide methane emission flux from Indianapolis, IN, the location of the INFLUX project, a test case for development of improved urban area-wide emission fluxes. Using an aircraft-based mass balance approach, we determined methane emissions directly downwind from the city. On average, the citywide CH₄ flux determined from several mass-balance flight experiments was 110 moles s⁻¹, a factor of ~8 smaller than the South Coast Air Basin, CA, methane emission for 2007 – 2010 (Wennberg et al., 2012). Results from several flight experiments consistently showed elevated CH₄ concentrations at specific coordinates along the horizontal transects downwind of the city (e.g. as shown in Figure 1a). In-flight investigations combined with back trajectories using measured wind directions at the coordinates of the hotspots showed that the CH₄ enhancements were from the southwest side of the city where a landfill and a Transmission Regulating Station (TRS) were located. This aircraft-based finding was supported by results from surface mobile methane measurements within the city (Figure 1b). Using data from several flight experiments, our initial results showed that the landfill-TRS contribute ~30% on average to the total city-wide methane flux. We used our surface mobile measurements to estimate the relative contributions from these two sources, as well as to determine other sources that contribute to the city-wide flux. It appears that most all of the rest of the flux derives from the natural gas distributions system.

Figure 1. (A) Methane distribution as a function of altitude and distance along the horizontal transect downwind of the city on June 1, 2011. (B) Observed methane enhancements directly downwind of a landfill and a natural gas transmission regulating station on the southwest side of the city during a surface mobile measurement on January 21, 2013.