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Outline

Motivation, objectives
Experimental design

Observations
— Aircraft observations / Whole-city flux estimates
— Tower-based observations

“Forward” simulations
— Detectability experiment
— Comparison to observations

Atmospheric inversions
— System design experiment
— (Real data inversions)

(Synthesis — e.g. inventory-inversion comparisons)



Motivation, background, objectives



motivation

Anthropogenic greenhouse gas (GHG) emissions are
Increasingly uncertain, even at global, annual scales
(~10% uncertainty)

Anthropogenic GHG emissions are much more uncertain
at local / regional scales (% uncertainty = ?)

Emissions mitigation will happen at local and regional
scales.

Validation of emissions mitigation will(?) require
Independent measurements

Atmospheric GHG measurements have the potential to
provide such independent emissions estimates.



Regional measurement campaigns

INFLUX,
2010-2017

B> Aircraft Profile

Midcontine c
) ) olors Denote Operator
Intensive, 2007-2009 Blue: NOA ESAL
RRRRRRRRRRRRRRRRRRRRRRRRR )
Gulf coast
N. American tower CO2 network circa 2008 Intensive,

2013-2017



MCI 31 day running mean daily daytime average CO2
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e Large differences in seasonal drawdown, despite
nearness of stations.

e 2 groups: 33-39 ppm drawdown and 24 — 29 ppm
drawdown. Tied to density of corn.

Miles et al, 2012, JGR-B
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Atmospheric inversions and agricultural inventory agree!

Inversions and inventory have similar uncertainty bounds!
Schuh et al, 2013, GCB



INFLUX objectives

e Develop improved methods for determination
of urban area-wide, and spatially and
temporally-resolved (e.g. monthly, 1 km?
resolution) fluxes of greenhouse gases,
specifically, CO, and CH,.

e Determine and minimize the uncertainty in the
emissions estimate methods.



INFLUX approach

Simultaneous application of multiple methods, e.g. aircraft
mass balance, mesoscale atmospheric inversions, plume
inversions, tracer methods, and emissions modeling.

Aircraft-based, whole-city flux estimates. (Cambaliza talk)

Aircraft and automobile plume measurements for determining
emissions from strong point sources (power plants, landfills, gas
leaks)

Inventory estimates of sector-by-sector emissions (residential,
commercial, industrial, traffic, power plant) at high spatial
resolution. (Hestia)

Trace gases measurements, especially 14C, to distinguish fossil
from biogenic CO2. (Sweeney poster)

Mesoscale atmospheric inversions to determine spatially and
temporally resolve GHG emissions estimates. (my focus)



Future applications

* Apply methods developed for Indianapolis
to other cities, including ‘megacity’ efforts.



Observational system
12 surface towers measuring CO, mixing ratios,
5 with CH,, and 5 with CO. (Penn State)

4 eddy-flux towers from natural to dense urban
landscapes. (Penn State)

5 automated flask samplers. (NOAA/CU)

Periodic aircraft flights (~monthly) with CO2,
CH4, and flask samples. (Purdue / NOAA)

Periodic automobile surveys of CO2 and CHA4.
(Purdue)

Doppler lidar. (NOAA/CU)

TCCON-FTS for 4 months (Sept-Dec 2012).
(NASA Ames)



Challenges for INFLUX

« Evaluate the urban boundary layer and land
surface simulated by WRF-Chem with
meteorological observations
— surface flux data,

— Doppler lidar,
— airborne meteorology,
— surface meteorological network.

« Use CO/CO,/*CO, to disaggregate fossil and
biogenic CO.,.

« Quantify strong point sources (landfill,
powerplant).



INFLUX observational results to date:
Whole-city mass-balance emissions estimates



Aircraft mass balance method

/ f‘ / Top of the boundary layer

Background
CO,, CH,
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Vertical structure of the atmospheric boundary layer

(ABL)

Vertical Profiles
of Potential
Temperature
and H,O (~ 1:00
to 1:30 p.m.
EDT)

6 June, 2012
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June 1, 2011 Results
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INFLUX tower-based observational results to date



INFLUX ground-based instrumentation

LEGEND

Measzurements being taken:

Picarro, CRDS sensors; NOAA automated flask samplers;

Communications towers ~100m AGL
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« [CO2] averaged
between 1300 and
1700 LST at 9 sites,
with 21-day
smoothing

«Seasonal and
synoptic cycles are
evident

Site 03 (downtown)
IS generally higher
than the other sites

«Site 09 (background
site to the east of the
city) often measures
the lowest average

[CO2]

* Note: Tower heights range from 40 m AGL to 136 m AGL



Observed: Dependence of CO2 spatial gradient on
wind speed
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Observed: Dependence of CO2 spatial gradient on
wind speed

CO2 Dry Mole Fraction (ppm)
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CO2 range as a function of wind speed

Model: Difference along domain- Observations: CO2 range
averaged wind direction amongst INFLUX sites

DAILY CO2 RANGE AS A FUNCTION OF WIND SPEED
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INFLUX ground-based instrumentation

LEGEND

Measzurements being taken:
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CQO2 Enhancement (ppm)

CO2 Enhancement (Site 02 — Site 01) as a
Function of Wind Direction
April — November 2011 (Afternoon hours only)

25

20

151 |

101 2

-10

-15

-20

-25

ay to
bility!

- Each point is an hour. e

 Red line is the median. |
i

i Note the |

LARGE ¢

I day varig

i NE SE w Weather!
(l) 5|0 1 (|)0 1 l|">0 2(|)0 2l'|_>0 3(|)0 3'c|_>0

Wind Direction



Median urban enhancement (Site 02 — Site
01): 100+ m AGL tower: CO2

0

e Blue arrows point to the
sources of enhanced CO2
measured at Site 02,
compared to Site 01

e Primarily from the west
(urban center)

e Maximum median
enhancements: ~ 5 ppm
CO2
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Median urban enhancement (Site 02 —
Site 01): 100+ m AGL tower: CO

e Red arrows point to the
sources of enhanced CO
measured at Site 02,
compared to Site 01

e Primarily from the west
(urban center)

e Maximum median
enhancements: ~ 20 ppb
CO

e Tracer of combustion
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CH4 Enhancement (ppb)

CH4 Enhancement (Site 02 — Site 01) as a

Function of Wind Direction
April — November 2011 (Afternoon hours only)
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Median urban enhancement (Site 02 —
Site 01): 100+ m AGL tower: CH4
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e Green arrows point to the
sources of enhanced CH4
measured at Site 02, compared
to Site 01

e Large source to the southeast
of Site 02, as well as to the
west (urban center)

e Maximum median
enhancements:
~ 10 ppb CH4



INFLUX ground-based instrumentation

LEGEND

Measzurements being taken:

Picarro, CRDS sensors; NOAA automated flask samplers;

Communications towers ~100m AGL
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Contributions to CO, enhancement
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CO as a fossil fuel CO, tracer?
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Observational summary

Cross-city mole fraction differences clearly
detected (given considerable averaging to
see through the weather)

Differences vary greatly with weather
conditions

Elevated sampling necessary to avoid
strong surface gradients

Winter, CO2 = CO2ff, and CO Is a decent
CO2ff tracer. Summer, not so.



INFLUX numerical modeling and data
analysis system



Inventory



Vulcan and Hestia Emission Inventories /
Models

Commercial Sector Emissions Residential Sector Emissions
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Hestia: high resolution emission
data for the residential,
commercial and industrial
sectors, in addition to the
transportation and electricity
production sectors.

Vulcan — hourly, 10km
resolution for USA

«See: Kevin Gurney/
*http://hestia.project.asu.edu/



Forward model results



Status of modeling system

 WRF-Chem running with:

— 3 nested domains (9/3/1 km resolution), inner
domain 1km?2 resolution, 87x87 km? domain

— Meteorological data assimilation

— Hestia anthropogenic fluxes for the inner
domain

— Vulcan anthropogenic fluxes for the outer
domains

— Carbon Tracker posterior biogenic fluxes
— Carbon Tracker boundary conditions
— CO2 tagged by source



Simulated anthropogenic COZ In the outer 2 domains:
Ten day time series
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Can we detect anthropogenic emissions?

Or do biogenic fluxes and lateral boundary conditions
dominate?



Monthly mean along-wind CO,:
Anthropogenic CO, emissions within the domain
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CO2 range as a function of wind speed

Model: Difference along domain- Observations: CO2 range
averaged wind direction amongst INFLUX sites

DAILY CO2 RANGE AS A FUNCTION OF WIND SPEED
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Monthly mean cross-wind CO.,;:
Anthropogenic CO, emissions within the domain
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Monthly mean along-wind CO,:
Anthropogenic CO, emissions within the domain

Winter Along Wind
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Monthly mean along-wind CO,:
Biological CO, fluxes within the domain

Winter Along Wind
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Monthly mean along-wind CO,:
Total CO, boundary conditions
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Forward simulation conclusions

Within-domain, anthropogenic fluxes
easlly detected in the winter.

Summer anthropogenic signal must be
deconvoluted from large biological signals.

— Both within-domain, and lateral boundaries

Weather signal reminiscent of
observations.

— Both boundary conditions and within domain

Mean gradients similar in magnitude to
tower observations



Inversion experiment. Network test



Tower-based atmospheric inversion system

Atmospheric transport model: Boundary and initial conditions

(WRF-chem, 1 km) (GHGs/met):
(Carbon Tracker, NOAA

aircraft profiles, NCEP
wind e wind meteorology)

Sources

Air Parcel Air Parcel \\

L ————

“ Prior flux estimate: w
w (Hestia and Vulcan,
EDGAR and EPA,
CT posterior and/or VPRM)

Network of tower-based GHG sensors:

12 sites with CO,, CH,, CO and “C
(12 sites wi 21 =4 an ©2) Lauvaux et al, 2012, ACP



Inversion system, continued

e Lagragian Particle Dispersion |
Model (LPDM, Uliasz). : |
— Determines “influence function” —

the areas that contribute to GHG
concentrations at measurement
points.

Releasing particles backward from
the measurement location

Wind fields over the domain
(atmospheric modeling)

=> Influence function
Lauvaux et al, 2012, ACP H(x)




Preliminary inversion system test

6 tower system tested, hourly daytime data
Prior errors proportional to fluxes

Prior error correlations 3km, isotropic, correlated
with land cover

Noise added with same spatial statistics, 80% of
flux magnitude

/ day Bayesian matrix inversion, November
No biogenic fluxes, no boundary conditions



Sample of influence functions for 6 towers

Particle
touchdown for
July 12, 2011
after 72 hours.
Touchdown is
considered
within 50m of
surface. The
background
values are EPA
4km CO.




Gain — relative improvement prior vs. posterior

0.0

Very good system
performance
within the tower
array. |
Very idealized
case, but

encouraging
nonetheless.

1 = perfect correction to prior fluxes



Data for atmospheric transport evaluation



| ocal surface met stations







Surface Energy Flux (W/mz)
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HALD INFLUX 2013 - Wind Speed (mfs) and Direction Profiles
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3D distribution of Potential Temperature
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3D distribution of CO, (black dot is Harding St. Power Plant)
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Conclusions

Whole city flux estimates obtained. ~30-40%
uncertainty? Aircraft.

Tower observations detect a clear urban signal
In both CO2 and CH4 (buried amid lots of
synoptic “noise”).

Simulations and measurements suggest that
light winds and winter are best for urban signal
detection. Strong winds and summer are the
toughest conditions.

Inversion system with 6 towers performs very
well under idealized conditions.

“Real data” inversions in progress.
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