Quantifying sources of methane using light alkanes in the Los Angeles basin, California

J. Peischl,^{1,2} T. B. Ryerson,² J. Brioude,^{1,2} K. C. Aikin,^{1,2} A. E. Andrews,³ E. Atlas,⁴ D. Blake,⁵ B. C. Daube,⁶ J. A. de Gouw,^{1,2} E. Dlugokencky,³ G. J. Frost,^{1,2} D. Gentner,⁷ J. B. Gilman,^{1,2} A. Goldstein,⁷ R. Harley,⁷ J. S. Holloway,^{1,2} J. Kofler,^{1,3} W. C. Kuster,² P. M. Lang,³ P. C. Novelli,³ G. W. Santoni,⁶ M. Trainer,² S. C. Wofsy,⁶ and D. D. Parrish²

¹CIRES, University of Colorado Boulder, CO; ²NOAA ESRL, Boulder, CO; ³NOAA ESRL GMD, Boulder, CO; ⁴University of Miami, FL; ⁵University of California, Irvine, CA; ⁶Harvard University, Cambridge, MA; ⁷University of California, Berkeley, CA

Outline

- 1. Quantify emissions of CH₄ from the Los Angeles megacity
- 2. Compare to state CH₄ inventory
- 3. Source attribution using $C_2 C_5$ alkanes
- 4. Applicability to other cities

1. Urban GHG emissions are significant but not well known

This issue is the focus of several new or nascent studies:

- NASA Megacities Carbon Project
 NIST INFLUX study
- EDF Well-to-Wheels study

Urban emissions are significant 1/4 of California methane comes from urbanized Los Angeles basin

Top-down assessments suggest substantial shortfalls in existing inventories of CH₄ in L.A.:

Top-down assessments of L.A. CH₄

Emissions of greenhouse gases from a North American megacity D. Wunch,¹ P. O. Wennberg,¹ G. C. Toon,^{1,2} G. Keppel-Aleks,¹ and Y. G. Yavin^{1,3}

column CH_4 , CO, and CO_2 at JPL (2008) observed $CH_4/CO = 0.66 \pm 0.12$ CARB CO and CO_2 ; EDGAR CO_2 Inventory CH_4 shortfall of 35% (using CO) to 57% (using CO_2)

1. Urban GHG emissions are significant but not well known

This issue is the focus of several new or nascent studies:

- NASA Megacities Carbon Project
 NIST INFLUX study
- EDF Well-to-Wheels study

Urban emissions are significant 1/4 of California methane comes from urbanized Los Angeles basin

Top-down assessments suggest substantial shortfalls in existing inventories of CH₄ in L.A.:

Top-down assessments of L.A. CH₄

Emissions of greenhouse gases from a North American megacity D. Wunch,¹ P. O. Wennberg,¹ G. C. Toon,^{1,2} G. Keppel-Aleks,¹ and Y. G. Yavin^{1,3}

column CH_4 , CO, and CO_2 at JPL (2008) observed $CH_4/CO = 0.66 \pm 0.12$ CARB CO and CO_2 ; EDGAR CO_2 Inventory CH_4 shortfall of 35% (using CO) to 57% (using CO_2)

Methane emissions inventory verification in southern California

Ying-Kuang Hsu ^{a, *}, Tony VanCuren ^a, Seong Park ^a, Chris Jakober ^a, Jorn Herner ^a, Michael FitzGibbon ^a, Donald R. Blake ^b, David D. Parrish ^c

in-situ CH_4 and CO from Mt. Wilson (2007-2008) observed $CH_4/CO = 0.52 \pm 0.02$ new bottom-up inventory for CH_4 Inventory CH_4 shortfall of 30%

Revisit this issue with updated inventories and CalNex 2010 data

1. Multiple sources complicate CH₄ quantification in L.A.

• sources: landfills, dairies, oil and gas production, traffic, natural gas pipelines, etc.

41

atltude, °N

33

124

California

longitude, °W 116

JPL and Mt. Wilson preferentially sample the western basin

e.g., another report in 2012 used Mt. Wilson data to conclude landfills are negligible

1. Information on L.A. source location and type

basin-wide sampling and extensive measurements of CH₄ and co-emitted species from fourteen NOAA P-3 flights in the daytime boundary layer, May–June 2010

scale obs. CH_4 ERs to CARB CO and CO_2 inventories \leftarrow derive total CH_4 for L.A. basin

1. Information on L.A. source location and type

 basin-wide sampling and extensive measurements of CH₄ and co-emitted species from fourteen NOAA P-3 flights in the daytime boundary layer, May–June 2010

- scale obs. CH₄ ERs to CARB CO and CO₂ inventories
- quantify emissions from landfills and dairies directly

 $\leftarrow \text{derive total CH}_4 \text{ for L.A. basin} \\ \leftarrow \text{spot-check inventory sectors}$

1. Information on L.A. source location and type

 basin-wide sampling and extensive measurements of CH₄ and co-emitted species from fourteen NOAA P-3 flights in the daytime boundary layer, May–June 2010

- scale obs. CH₄ ERs to CARB CO and CO₂ inventories
- quantify emissions from landfills and dairies directly
- use light alkane data to attribute CH₄ to sources

- $\leftarrow \text{derive total CH}_4 \text{ for L.A. basin}$
- ← spot-check inventory sectors
- ← quantify relative contributions

enhancement ratio (ER)

 $CH_{4(total)} = (CH_4/CO) \bullet CO_{CARB}$

ER accuracy is determined by extent of mixing between emissions from different sources within the basin

ER accuracy is determined by extent of mixing between emissions from different sources within the basin

Accuracy is also determined by the uncertainties in the 2^{nd} term - CARB inventories of CO and CO_2

ER accuracy is determined by extent of mixing between emissions from different sources within the basin

Accuracy is also determined by the uncertainties in the 2^{nd} term - CARB inventories of CO and CO_2

- observed CO/CO₂ = inventory CO/CO₂
- inverse model supports inventory CO₂
 (Brioude et al., ACP, 2013)

ER accuracy is determined by extent of mixing between emissions from different sources within the basin

Accuracy is also determined by the uncertainties in the 2^{nd} term - CARB inventories of CO and CO_2

- observed CO/CO₂ = inventory CO/CO₂
- inverse model supports inventory CO₂ (Brioude et al., ACP, 2013)

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996]

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996] *Wennberg et al.* [2012]

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996] *Wennberg et al.* [2012] *Blake et al.* [1995]

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996] *Wennberg et al.* [2012] *Blake et al.* [1995] *Jeffrey et al.* [1991]

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996] *Wennberg et al.* [2012] *Blake et al.* [1995] *Jeffrey et al.* [1991] *Jeffrey et al.* [1991]

one example: Five field studies in eight years made atmospheric measurements of propane and ethane in L.A.

Compare with published source composition data: *Kirchstetter et al.* [1996] *Wennberg et al.* [2012] *Blake et al.* [1995] *Jeffrey et al.* [1991] *Jeffrey et al.* [1991]

 The <u>suite</u> of light alkanes provides essential information to attribute emissions to sources

 $C_2 - C_5$ alkane measurements (ethane through pentane isomers) permit robust attribution of CH_4 to specific source types

Use source composition data to solve for the linear combination of sources that can explain observed abundances in the L.A. atmosphere: Ax = b

model-independent quantification of relative contributions to CH₄ budget

3. Use light alkanes to apportion sources of CH₄ in L.A.

Results of a LLS solution using 7 hydrocarbons.

Black lines give derived annual totals for L.A. total emissions = $(X/CO) \bullet CO_{CARB}$

Colored bars:

fraction of the total from each of the 7 source sectors used in the linear analysis.

 CH_4 emission attributed to each source type is written above the colored CH_4 bars.

Pie charts:

relative contributions from each source for each of the 7 hydrocarbons

3. Conclusions from CH₄ source apportionment

- Inventories still significantly underpredict CH₄ in the Los Angeles atmosphere.
- Model-independent attribution of CH_4 to specific sources enabled by use of C_2-C_5 data.
- The majority of CH₄ is due to leaks from pipeline dry NG/local seeps and landfills.
- Leaks from **pipeline dry NG/local seeps** and **local NG** account for the consistent top-down vs. bottom-up discrepancies in CH₄.
- Loss of **local NG** contributes 8% of CH_4 in L.A. (loss = 17% of local production).

later confirmed by CARB industry survey
cf. 4% for gas production basins in Colorado (Petron et al., 2012)

4. Applicability to other cities

Required measurements:

 $\begin{array}{c} \mathsf{CH}_4 \\ \mathsf{C}_2 - \mathsf{C}_5 \text{ alkanes} \end{array} \right\} \begin{array}{c} \text{relative attribution;} \\ \text{which sources to focus on first} \end{array}$

CO CO₂ + inventory = total emission; provides global context

Required platforms:

