Methyl Chloride as a Tracer of Tropical Tropospheric Air in the Lowermost Stratosphere Inferred from CARIBIC Passenger Aircraft Measurements

T. Umezawa^{1,2}, A.K. Baker¹, C.A.M. Brenninkmeijer¹, A. Zahn³, D. Oram⁴ and P. van Velthoven⁵

¹Max Planck Institute for Chemistry, Mainz, Germany; 81-29-850-2525, E-mail: umezawa.taku@nies.go.jp
²National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan
³Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
⁴National Centre for Atmospheric Science, Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
⁵Royal Netherlands Meteorological Institute (KNMI), Climate Observations, De Bilt, The Netherlands

CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) is a flying observatory that measures various atmospheric compounds from onboard a Lufthansa A340-600 aircraft. In this study, we present variations of nitrous oxide (N₂O) and methyl chloride (CH₂Cl) in the lowermost stratosphere (LMS) obtained from air samples collected by CARIBIC for the period 2008–2012. To correct for the secular increase of atmospheric N₂O, the CARIBIC N₂O data are expressed as ΔN_2 O, deviations from the long-term trend at Mauna Loa, Hawaii (data provided by NOAA's measurements). The ΔN_0 values are used to classify CARIBIC air samples as representing air from either the LMS or the upper troposphere (UT). $\Delta N_0 O$ undergoes a pronounced seasonal variation in the LMS with a minimum in spring. The amplitude increases going deeper in the LMS (up to potential temperatures of 50 K with respect to the thermal tropopause), as a result of the seasonally varying subsidence of air from the stratospheric overworld. Seasonal variations of CH₂Cl in the LMS are similar in phase to those of ΔN_0 . Significant correlations are found between CH₂Cl and ΔN_0 . in the LMS from winter to early summer, both being affected by mixing between stratospheric air and UT air. This correlation however disappears in late summer to autumn. The slope of the $CH_2Cl-\Delta N_3O$ correlation observed in the LMS allows us to determine the stratospheric lifetime of CH₂Cl to be 35 ± 7 yr. Finally, we examine the partitioning of tropospheric air, tropical tropospheric air and extratropical tropospheric air in the LMS based on a mass balance approach using $\Delta N_2 O$ and CH₂Cl. This analysis clearly indicates efficient inflow of tropical tropospheric air into the LMS in summer and demonstrates the usefulness of CH₂Cl as a unique tracer of tropical tropospheric air.

Figure 1. Seasonal variations of (a) $\Delta N_2 O$ and (b) CH₃Cl at different potential temperature layers with respect to the thermal tropopause ($\Delta \Theta TP$) in the UT/LMS observed by CARIBIC.